Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Assistance System for Traffic Signs Inventory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43909407" target="_blank" >RIV/62156489:43110/15:43909407 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ece.pefka.mendelu.cz/sites/default/files/imce/ece_2015_final.pdf" target="_blank" >https://ece.pefka.mendelu.cz/sites/default/files/imce/ece_2015_final.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assistance System for Traffic Signs Inventory

  • Popis výsledku v původním jazyce

    We can see arising trend in the automotive industry in last years -autonomous cars that are driven just by on-board computers. During the driverless ride, computer must process a wide set of information gained by GPS locators and computer vision system, including GPS position, driving speed and descriptions of lanes and traffic signs. The traffic signs tracking system must deal with real conditions with data that are frequently obtained in poor light condition, fog and heavy rain or are otherwise disturbed. Completely same problem is solved by mapping companies that are producing geospatial data for different information systems, navigations, etc. Examples of such companies can be TomTom or Mapy.cz. They are frequently using cars equipped with a wide range of measuring instruments including panoramic cameras. These measurements are frequently done during early morning hours when the traffic conditions are acceptable. However, in this time, the sun position is usually not optimal for the photography. Most of the traffic signs and other street objects are heavily underexposed. Hence, it is difficult to find an automatic approach that can identify them reliably. In this article, we focus on methods designed to deal with described conditions. An overview of the state-of-the-art methods is outlined. Further, where it is possible, we outline an implementation of described methods using well-known Open Computer Vision library. Finally, emphasis is placed on methods that can deal with low light conditions, fog or other situations that complicate the detection process.

  • Název v anglickém jazyce

    Assistance System for Traffic Signs Inventory

  • Popis výsledku anglicky

    We can see arising trend in the automotive industry in last years -autonomous cars that are driven just by on-board computers. During the driverless ride, computer must process a wide set of information gained by GPS locators and computer vision system, including GPS position, driving speed and descriptions of lanes and traffic signs. The traffic signs tracking system must deal with real conditions with data that are frequently obtained in poor light condition, fog and heavy rain or are otherwise disturbed. Completely same problem is solved by mapping companies that are producing geospatial data for different information systems, navigations, etc. Examples of such companies can be TomTom or Mapy.cz. They are frequently using cars equipped with a wide range of measuring instruments including panoramic cameras. These measurements are frequently done during early morning hours when the traffic conditions are acceptable. However, in this time, the sun position is usually not optimal for the photography. Most of the traffic signs and other street objects are heavily underexposed. Hence, it is difficult to find an automatic approach that can identify them reliably. In this article, we focus on methods designed to deal with described conditions. An overview of the state-of-the-art methods is outlined. Further, where it is possible, we outline an implementation of described methods using well-known Open Computer Vision library. Finally, emphasis is placed on methods that can deal with low light conditions, fog or other situations that complicate the detection process.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Enterprise and Competitive Environment: Conference Proceedings

  • ISBN

    978-80-7509-342-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1008-1017

  • Název nakladatele

    Mendelova univerzita v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    5. 3. 2015

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000380464000109