Advanced Methods of Statistical Process Control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F16%3A00092045" target="_blank" >RIV/62156489:43110/16:00092045 - isvavai.cz</a>
Výsledek na webu
<a href="http://pefnet.pefka.mendelu.cz/sites/default/files/sbornik_verze_FIN_WEB.pdf" target="_blank" >http://pefnet.pefka.mendelu.cz/sites/default/files/sbornik_verze_FIN_WEB.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Methods of Statistical Process Control
Popis výsledku v původním jazyce
Continuous quality improvement is common part of business stratégy of many companies. Quality control is essential especially in manufacture processes. Widely used Shewhart control charts for individual measurements are easily applicable but less sensitive indetecting proces shifts. Hence advanced methods of statistical process control, EWMA and CUSUM, are increasingly used. The sensitivity of these methods was compared on the basis of the interpretation of the resulting control charts and the average run length. It was proven that the methods EWMA and CUSUM are more suitable in statistical proces control, in which the individual values are analyzed, since they are capable of detecting even a small process shifts. Thanks to that operator is able to adjust the process faster.
Název v anglickém jazyce
Advanced Methods of Statistical Process Control
Popis výsledku anglicky
Continuous quality improvement is common part of business stratégy of many companies. Quality control is essential especially in manufacture processes. Widely used Shewhart control charts for individual measurements are easily applicable but less sensitive indetecting proces shifts. Hence advanced methods of statistical process control, EWMA and CUSUM, are increasingly used. The sensitivity of these methods was compared on the basis of the interpretation of the resulting control charts and the average run length. It was proven that the methods EWMA and CUSUM are more suitable in statistical proces control, in which the individual values are analyzed, since they are capable of detecting even a small process shifts. Thanks to that operator is able to adjust the process faster.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů