Development of models for forest variable estimation from airborne laser scanning data using an area-based approach at a plot level
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F16%3A43909008" target="_blank" >RIV/62156489:43110/16:43909008 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/16:43909008
Výsledek na webu
<a href="http://dx.doi.org/10.17221/73/2015-JFS" target="_blank" >http://dx.doi.org/10.17221/73/2015-JFS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/73/2015-JFS" target="_blank" >10.17221/73/2015-JFS</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of models for forest variable estimation from airborne laser scanning data using an area-based approach at a plot level
Popis výsledku v původním jazyce
Airborne laser scanning (ALS) is increasingly used in the forestry over time, especially in a forest inventory process. A great potential of ALS lies in providing quick high precision data acquisition for purposes such as measurements of stand attributes over large forested areas. Models were developed using an area-based approach to predict forest variables such as wood volume and basal area. The solution was performed through developing an object-oriented script using Python programming language, Python Data Analysis Library (Pandas), which represents a very flexible and powerful data analysis tool in conjunction with interactive computational environment the IPython Notebook. Several regression models for estimation of forest inventory attributes were developed at a plot level.
Název v anglickém jazyce
Development of models for forest variable estimation from airborne laser scanning data using an area-based approach at a plot level
Popis výsledku anglicky
Airborne laser scanning (ALS) is increasingly used in the forestry over time, especially in a forest inventory process. A great potential of ALS lies in providing quick high precision data acquisition for purposes such as measurements of stand attributes over large forested areas. Models were developed using an area-based approach to predict forest variables such as wood volume and basal area. The solution was performed through developing an object-oriented script using Python programming language, Python Data Analysis Library (Pandas), which represents a very flexible and powerful data analysis tool in conjunction with interactive computational environment the IPython Notebook. Several regression models for estimation of forest inventory attributes were developed at a plot level.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Forest Science
ISSN
1212-4834
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
137-142
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84963620274