Prediction of Bankruptcy with SVM Classifiers Among Retail Business Companies in EU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F16%3A43909135" target="_blank" >RIV/62156489:43110/16:43909135 - isvavai.cz</a>
Výsledek na webu
<a href="http://acta.mendelu.cz/media/pdf/actaun_2016064020627.pdf" target="_blank" >http://acta.mendelu.cz/media/pdf/actaun_2016064020627.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201664020627" target="_blank" >10.11118/actaun201664020627</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Bankruptcy with SVM Classifiers Among Retail Business Companies in EU
Popis výsledku v původním jazyce
Article focuses on the prediction of bankruptcy of the 850 medium-sized retail business companies in EU from which 48 companies gone bankrupt in 2014 with respect to lag of the used features. From various types of classifi cation models we chose Support vector machines method with linear, polynomial and radial kernels to acquire best results. Pre-processing is enhanced with fi lter based feature selection like Gain ratio, Chi-square and Relief algorithm to acquire attributes with the best information value. On this basis we deal with random samples of fi nancial data to measure prediction accuracy with the confusion matrices and area under curve values for diff erent kernel types and selected features. From the results it is obvious that with the rising distance to the bankruptcy there drops precision of bankruptcy prediction. The last year (2013) with avaible fi nancial data off ers best total prediction accuracy, thus we also infer both the Error I and II types for better recognizance. The 3rd order polynomial kernel off ers better accuracy for bankruptcy prediction than linear and radial versions. But in terms of the total accuracy we recommend to use radial kernel without feature selection.
Název v anglickém jazyce
Prediction of Bankruptcy with SVM Classifiers Among Retail Business Companies in EU
Popis výsledku anglicky
Article focuses on the prediction of bankruptcy of the 850 medium-sized retail business companies in EU from which 48 companies gone bankrupt in 2014 with respect to lag of the used features. From various types of classifi cation models we chose Support vector machines method with linear, polynomial and radial kernels to acquire best results. Pre-processing is enhanced with fi lter based feature selection like Gain ratio, Chi-square and Relief algorithm to acquire attributes with the best information value. On this basis we deal with random samples of fi nancial data to measure prediction accuracy with the confusion matrices and area under curve values for diff erent kernel types and selected features. From the results it is obvious that with the rising distance to the bankruptcy there drops precision of bankruptcy prediction. The last year (2013) with avaible fi nancial data off ers best total prediction accuracy, thus we also infer both the Error I and II types for better recognizance. The 3rd order polynomial kernel off ers better accuracy for bankruptcy prediction than linear and radial versions. But in terms of the total accuracy we recommend to use radial kernel without feature selection.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
627-634
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84969988780