Small sample robust approach to outliers and correlation of atmospheric pollution and health effects in Santiago de Chile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43914762" target="_blank" >RIV/62156489:43110/19:43914762 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.chemolab.2018.12.010" target="_blank" >https://doi.org/10.1016/j.chemolab.2018.12.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemolab.2018.12.010" target="_blank" >10.1016/j.chemolab.2018.12.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small sample robust approach to outliers and correlation of atmospheric pollution and health effects in Santiago de Chile
Popis výsledku v původním jazyce
Adverse effects of air pollution on health are a global problem. Chile is no exception due to the increase of urban population and increasing pollution sources. For several years in the winter months in Santiago de Chile, environmental pre-emergency is decreed, which is due to the increase of measurements of contaminants and the risk that this means to health. In order to model the effects of pollution on health we consider a hierarchical Bayesian generalized linear mixed autoregressive model proposed by Ref. [18]. In particular, we apply the model to the number of children with respiratory diseases in the town of Santiago for the period June-August 2011, using the PM2.5 data as covariate obtained by a spatiotemporal pollution model. In order to detect anomalous data, we apply to residuals both robust normality tests together with novel method of probabilities for mild or extreme outliers. We detected significant heterogeneity between stations which offer us better monitoring planning for the future.
Název v anglickém jazyce
Small sample robust approach to outliers and correlation of atmospheric pollution and health effects in Santiago de Chile
Popis výsledku anglicky
Adverse effects of air pollution on health are a global problem. Chile is no exception due to the increase of urban population and increasing pollution sources. For several years in the winter months in Santiago de Chile, environmental pre-emergency is decreed, which is due to the increase of measurements of contaminants and the risk that this means to health. In order to model the effects of pollution on health we consider a hierarchical Bayesian generalized linear mixed autoregressive model proposed by Ref. [18]. In particular, we apply the model to the number of children with respiratory diseases in the town of Santiago for the period June-August 2011, using the PM2.5 data as covariate obtained by a spatiotemporal pollution model. In order to detect anomalous data, we apply to residuals both robust normality tests together with novel method of probabilities for mild or extreme outliers. We detected significant heterogeneity between stations which offer us better monitoring planning for the future.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-07089S" target="_blank" >GA16-07089S: Robustní přístup testování normality chybového členu v ekonometrických modelech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemometrics and Intelligent Laboratory Systems
ISSN
0169-7439
e-ISSN
—
Svazek periodika
185
Číslo periodika v rámci svazku
15 February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
73-84
Kód UT WoS článku
000458943100009
EID výsledku v databázi Scopus
2-s2.0-85059744473