Amortization Schedule via Linear Difference Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918275" target="_blank" >RIV/62156489:43110/20:43918275 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Amortization Schedule via Linear Difference Equations
Popis výsledku v původním jazyce
The main aim of this paper is to show an application of difference equations in the field of finance. We deal with the loan repayment of constant annuities and derive formulas which are used to create an amortization schedule. We focus especially on calculation the amount of interest and the amount reducing the outstanding principle as well as the loan balance in each payment period. All necessary formulas are obtained by solving difference equations, contrary to the practice of financial mathematics where sequence properties are used. It is shown that recursion between two consecutive elements of considered sequences constitutes actually the first order linear difference equation with constant coefficients. As the mentioned formulas used in amortization schedule represent the rules for calculating an arbitrary element of such sequences to find them means to solve the appropriate difference equations which is demonstrated in this contribution.
Název v anglickém jazyce
Amortization Schedule via Linear Difference Equations
Popis výsledku anglicky
The main aim of this paper is to show an application of difference equations in the field of finance. We deal with the loan repayment of constant annuities and derive formulas which are used to create an amortization schedule. We focus especially on calculation the amount of interest and the amount reducing the outstanding principle as well as the loan balance in each payment period. All necessary formulas are obtained by solving difference equations, contrary to the practice of financial mathematics where sequence properties are used. It is shown that recursion between two consecutive elements of considered sequences constitutes actually the first order linear difference equation with constant coefficients. As the mentioned formulas used in amortization schedule represent the rules for calculating an arbitrary element of such sequences to find them means to solve the appropriate difference equations which is demonstrated in this contribution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2020: Conference Proceedings
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
511-515
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668460800078