Exploring, Categorisation and Usage of Artificial Intelligence Algorithms for Supply Chain Management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F23%3A43924526" target="_blank" >RIV/62156489:43110/23:43924526 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.doi.org/10.17512/CUT/9788371939563/18" target="_blank" >https://www.doi.org/10.17512/CUT/9788371939563/18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17512/CUT/9788371939563/18" target="_blank" >10.17512/CUT/9788371939563/18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring, Categorisation and Usage of Artificial Intelligence Algorithms for Supply Chain Management
Popis výsledku v původním jazyce
This paper explores the categorisation and usage of Artificial intelligence Algorithms (AIA) in Supply Chain Management (SCM) and discusses the potential benefits and challenges of implementing AI in SCM. The study reviews the literature on the application of AI in SCM. It provides a comprehensive list of commonly used algorithms in different SCM applications, such as vendor selection, production planning, resource allocation, quality control, predictive maintenance, visibility, demand forecasting, inventory optimisation, transportation optimisation, and customer segmentation. The paper highlights the versatility and potential for the cross-functional use of many AI algorithms. It identifies challenges and limitations, including data quality and availability, privacy and security concerns, and a lack of understanding and trust in AI systems. The study concludes that AI has the potential to significantly impact SCM by increasing efficiency, accuracy, and flexibility while reducing costs. However, further research is needed to develop best practices for adopting and implementing AI in SCM and to address ethical implications related to AI in SCM.
Název v anglickém jazyce
Exploring, Categorisation and Usage of Artificial Intelligence Algorithms for Supply Chain Management
Popis výsledku anglicky
This paper explores the categorisation and usage of Artificial intelligence Algorithms (AIA) in Supply Chain Management (SCM) and discusses the potential benefits and challenges of implementing AI in SCM. The study reviews the literature on the application of AI in SCM. It provides a comprehensive list of commonly used algorithms in different SCM applications, such as vendor selection, production planning, resource allocation, quality control, predictive maintenance, visibility, demand forecasting, inventory optimisation, transportation optimisation, and customer segmentation. The paper highlights the versatility and potential for the cross-functional use of many AI algorithms. It identifies challenges and limitations, including data quality and availability, privacy and security concerns, and a lack of understanding and trust in AI systems. The study concludes that AI has the potential to significantly impact SCM by increasing efficiency, accuracy, and flexibility while reducing costs. However, further research is needed to develop best practices for adopting and implementing AI in SCM and to address ethical implications related to AI in SCM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Management „Sustainability – Security – Quality“: Book of Proceedings
ISBN
978-83-7193-956-3
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
118-126
Název nakladatele
Czestochowa University of Technology
Místo vydání
Częstochowa
Místo konání akce
Czestochowa
Datum konání akce
15. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—