Remotely sensed NDVI as a support tool for agricultural drought assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F13%3A00213128" target="_blank" >RIV/62156489:43210/13:00213128 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Remotely sensed NDVI as a support tool for agricultural drought assessment
Popis výsledku v původním jazyce
The main aim of the submitted study was to introduce how the remotely sensed NDVI (Normalized Diff erence Vegetation Index) could be used for agricultural drought assessment within the Czech Republic. The relationship between NDVI values and observed yields of spring barley and winter wheat was analyzed for selected districts. Moreover the ability of NDVI (at district level in the form of seasonal greenness -- SG) to explain the water balance or drought occurrence and severity was tested. For this purpose a data mining technique was used. A relative form of the Palmer Drought Severity Index (rPDSI) was used as a dependent variable to indicate drought occurrence. A Standardized Precipitation Index (SPI), percentage of average SG (PASG), Start of SeasonAnomaly (SOSA) and district identifi cation were used as independent variables. MODIS (Moderate Resolution Imaging Spectroradiometer) observations from the Terra satellite were used as a source of NDVI. Th e situation within 6 selected di
Název v anglickém jazyce
Remotely sensed NDVI as a support tool for agricultural drought assessment
Popis výsledku anglicky
The main aim of the submitted study was to introduce how the remotely sensed NDVI (Normalized Diff erence Vegetation Index) could be used for agricultural drought assessment within the Czech Republic. The relationship between NDVI values and observed yields of spring barley and winter wheat was analyzed for selected districts. Moreover the ability of NDVI (at district level in the form of seasonal greenness -- SG) to explain the water balance or drought occurrence and severity was tested. For this purpose a data mining technique was used. A relative form of the Palmer Drought Severity Index (rPDSI) was used as a dependent variable to indicate drought occurrence. A Standardized Precipitation Index (SPI), percentage of average SG (PASG), Start of SeasonAnomaly (SOSA) and district identifi cation were used as independent variables. MODIS (Moderate Resolution Imaging Spectroradiometer) observations from the Terra satellite were used as a source of NDVI. Th e situation within 6 selected di
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
DG - Vědy o atmosféře, meteorologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Global Change and Resilience
ISBN
978-80-904351-9-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
152-156
Název nakladatele
Global Change Research Centre, AS CR, v. v. i.
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
22. 5. 2013
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—