Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Crop Yield Estimation in the Field Level Using Vegetation Indices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F16%3A43910102" target="_blank" >RIV/62156489:43210/16:43910102 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mnet.mendelu.cz/mendelnet2016/mnet_2016_full.pdf" target="_blank" >https://mnet.mendelu.cz/mendelnet2016/mnet_2016_full.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Crop Yield Estimation in the Field Level Using Vegetation Indices

  • Popis výsledku v původním jazyce

    Remote sensing can be very useful tool for agriculture management. In this study, remote sensing methods were applied for yield estimation in the field level. There were compared remote sensing data together with yield data obtained from the field. The study area is located in Polkovice in Olomoucký region and a crop planted there in the year 2016 was spring barley as one of most important crops grown in the region. The study area in Polkovice is located at lower elevations with intensive crop production and is climatologically warmer and drier than other areas of the Czech Republic. Year 2016 was the first year when the harvest device has been used for yield analysis in this study area. The output of this method is the yield map displaying the amount of crop harvested in the particular place in the field. The yield data from the field were then compared with remote sensing data in the form of vegetation indices. Two of them were used for comparison - Normalized Difference Vegetation Index (NDVI) and a two-band Enhanced Vegetation Index (EVI2). These indices have been often used for yield estimation in different studies but mostly in larger scales. This study investigates use of NDVI and EVI2 at more detailed scale while using various remote sensing methods. Comparisons show that remote sensing data can provide accurate estimation and can be used for yield forecasting or supplement traditional ways of yield estimation. Results of the study show that yield-index correlations are stronger for satellite data than for the drone data. NDVI showed slightly stronger correlations than EVI2. Strongest correlations between vegetation indices and yields were found for NDVI from Sentinel 2.

  • Název v anglickém jazyce

    Crop Yield Estimation in the Field Level Using Vegetation Indices

  • Popis výsledku anglicky

    Remote sensing can be very useful tool for agriculture management. In this study, remote sensing methods were applied for yield estimation in the field level. There were compared remote sensing data together with yield data obtained from the field. The study area is located in Polkovice in Olomoucký region and a crop planted there in the year 2016 was spring barley as one of most important crops grown in the region. The study area in Polkovice is located at lower elevations with intensive crop production and is climatologically warmer and drier than other areas of the Czech Republic. Year 2016 was the first year when the harvest device has been used for yield analysis in this study area. The output of this method is the yield map displaying the amount of crop harvested in the particular place in the field. The yield data from the field were then compared with remote sensing data in the form of vegetation indices. Two of them were used for comparison - Normalized Difference Vegetation Index (NDVI) and a two-band Enhanced Vegetation Index (EVI2). These indices have been often used for yield estimation in different studies but mostly in larger scales. This study investigates use of NDVI and EVI2 at more detailed scale while using various remote sensing methods. Comparisons show that remote sensing data can provide accurate estimation and can be used for yield forecasting or supplement traditional ways of yield estimation. Results of the study show that yield-index correlations are stronger for satellite data than for the drone data. NDVI showed slightly stronger correlations than EVI2. Strongest correlations between vegetation indices and yields were found for NDVI from Sentinel 2.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    DG - Vědy o atmosféře, meteorologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MendelNet 2016: Proceedings of International PhD Students Conference

  • ISBN

    978-80-7509-443-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    90-95

  • Název nakladatele

    Mendelova univerzita v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    9. 11. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000392968500014