Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F18%3A43913914" target="_blank" >RIV/62156489:43210/18:43913914 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/18:00103554
Výsledek na webu
<a href="https://doi.org/10.5194/bg-15-5189-2018" target="_blank" >https://doi.org/10.5194/bg-15-5189-2018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/bg-15-5189-2018" target="_blank" >10.5194/bg-15-5189-2018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
Popis výsledku v původním jazyce
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Název v anglickém jazyce
Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
Popis výsledku anglicky
Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biogeosciences
ISSN
1726-4170
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
5189-5202
Kód UT WoS článku
000443077000002
EID výsledku v databázi Scopus
2-s2.0-85052703996