Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915012" target="_blank" >RIV/62156489:43210/19:43915012 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/18:43915716 RIV/00216305:26620/19:PU131537
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.201806696" target="_blank" >https://doi.org/10.1002/adfm.201806696</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201806696" target="_blank" >10.1002/adfm.201806696</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines
Popis výsledku v původním jazyce
Nano/micromachines with autonomous motion are the frontier of nanotechnology and nanomaterial research. These self-propelled nano/micromachines convert chemical energy obtained from their surroundings to propulsion. They have shown great potential in diagnostic and therapeutic applications. This work introduces a high-speed tubular electrically conductive micromachine based on reduced nanographene oxide (n-rGO) as a platform for drug delivery and platinum (Pt) as the catalytic inner layer. n-rGO/Pt micromachines are loaded with doxorubicin (DOX) by a simple physical adsorption with a very high loading efficiency, displaying single- or multistrand wrapping of DOX monomers on the micromachine cylinders. More importantly, it is found that electron injection into DOX@n-rGO/Pt micromachines via electrochemistry leads to expulsion of DOX from micromachines in motion within only a few seconds. An in vitro study confirms this efficient release mechanism in the presence of cancerous cells. The unique properties of the n-rGO/Pt micromotor enable the effective management of DOX release at the tumor site and thus enhances the therapeutic efficiency and reduces the side toxicity toward the healthy tissue. These micromachine drug carriers combine the high loading capacity of conventional carbon-based drug carriers with a fast and efficient electrochemical drug-release mechanism.
Název v anglickém jazyce
Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines
Popis výsledku anglicky
Nano/micromachines with autonomous motion are the frontier of nanotechnology and nanomaterial research. These self-propelled nano/micromachines convert chemical energy obtained from their surroundings to propulsion. They have shown great potential in diagnostic and therapeutic applications. This work introduces a high-speed tubular electrically conductive micromachine based on reduced nanographene oxide (n-rGO) as a platform for drug delivery and platinum (Pt) as the catalytic inner layer. n-rGO/Pt micromachines are loaded with doxorubicin (DOX) by a simple physical adsorption with a very high loading efficiency, displaying single- or multistrand wrapping of DOX monomers on the micromachine cylinders. More importantly, it is found that electron injection into DOX@n-rGO/Pt micromachines via electrochemistry leads to expulsion of DOX from micromachines in motion within only a few seconds. An in vitro study confirms this efficient release mechanism in the presence of cancerous cells. The unique properties of the n-rGO/Pt micromotor enable the effective management of DOX release at the tumor site and thus enhances the therapeutic efficiency and reduces the side toxicity toward the healthy tissue. These micromachine drug carriers combine the high loading capacity of conventional carbon-based drug carriers with a fast and efficient electrochemical drug-release mechanism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30107 - Medicinal chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-28334A" target="_blank" >NV15-28334A: Vliv metalothioneinů na vazbu platinových cytostatik na DNA v nádorových buňkách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
1806696
Kód UT WoS článku
000456216900011
EID výsledku v databázi Scopus
2-s2.0-85057770658