A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915593" target="_blank" >RIV/62156489:43210/19:43915593 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1155/2019/5219471" target="_blank" >https://doi.org/10.1155/2019/5219471</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2019/5219471" target="_blank" >10.1155/2019/5219471</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
Popis výsledku v původním jazyce
Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.
Název v anglickém jazyce
A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
Popis výsledku anglicky
Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Sensors
ISSN
1687-725X
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
5 May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
5219471
Kód UT WoS článku
000468512700001
EID výsledku v databázi Scopus
2-s2.0-85066093058