Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915593" target="_blank" >RIV/62156489:43210/19:43915593 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1155/2019/5219471" target="_blank" >https://doi.org/10.1155/2019/5219471</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2019/5219471" target="_blank" >10.1155/2019/5219471</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases

  • Popis výsledku v původním jazyce

    Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.

  • Název v anglickém jazyce

    A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases

  • Popis výsledku anglicky

    Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Sensors

  • ISSN

    1687-725X

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    5 May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    5219471

  • Kód UT WoS článku

    000468512700001

  • EID výsledku v databázi Scopus

    2-s2.0-85066093058