Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915691" target="_blank" >RIV/62156489:43210/19:43915691 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/19:PU132593
Výsledek na webu
<a href="https://doi.org/10.1016/j.bpj.2019.04.017" target="_blank" >https://doi.org/10.1016/j.bpj.2019.04.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bpj.2019.04.017" target="_blank" >10.1016/j.bpj.2019.04.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins
Popis výsledku v původním jazyce
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles)in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD)of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD)in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
Název v anglickém jazyce
Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins
Popis výsledku anglicky
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles)in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD)of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD)in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-10251S" target="_blank" >GA18-10251S: Komplexní pohled na mechanismus působení a metabolismus inhibitorů tyrosinkinas a studium přístupů k potenciaci jejich protinádorové účinnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biophysical Journal
ISSN
0006-3495
e-ISSN
—
Svazek periodika
116
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
2062-2072
Kód UT WoS článku
000470092800003
EID výsledku v databázi Scopus
2-s2.0-85065395420