Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43917494" target="_blank" >RIV/62156489:43210/20:43917494 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/86652079:_____/20:00523938
Výsledek na webu
<a href="https://doi.org/10.1016/j.scitotenv.2020.137058" target="_blank" >https://doi.org/10.1016/j.scitotenv.2020.137058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2020.137058" target="_blank" >10.1016/j.scitotenv.2020.137058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice
Popis výsledku v původním jazyce
We tested the hypothesis that application of stable forms of organic carbon (C) into the soil reduces leaching of nitrogen (N). We also examined the potential to estimate N leaching employing N-sensitive spectral reflectance indices. During three growing seasons 2013-2015, field experiment at two experimental sites combining application of distinct N doses (0 (N0), 35 (N35), 70 (N70), and 140 (N140) kg N haMINUS SIGN 1) and two stable forms of organic C (lignohumate and compost) was established to measure N uptake by winter wheat and its leaching to subsoil layers. The spectral reflectance at canopy level was measured simultaneously with N content in leaf dry matter at the beginning of the grain filling phase. At full maturity, the above-ground biomass, grain yield, and grain protein content were evaluated. That data was used to calculate N uptake in grain. The N140 dose led to increased N uptake by grain of 64% and 73% in the wetter years 2013 and 2014, respectively, and even by 118% in the drier year 2015 in comparison with the N0 treatment. N leaching to subsoil increased substantially with higher N dose, but only in wetter years 2013 (by 74%) and 2014 (by 87%). By contrast, no effect of N dose on leached N was found in the dry year 2015. The application of organic C along with the N140 dose substantially reduced N leaching by 26% and 29% in 2014 and 2015, respectively. Moreover, we demonstrated that normalized red-edge spectral reflectance index (NRERI) is able to predict N uptake by wheat and it can serve as an indicator of N leaching in heavy-rainfall years. Our results thus point towards possible agronomic practices and use of remote-sensing techniques to reduce groundwater contamination by N-based fertilizers.
Název v anglickém jazyce
Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice
Popis výsledku anglicky
We tested the hypothesis that application of stable forms of organic carbon (C) into the soil reduces leaching of nitrogen (N). We also examined the potential to estimate N leaching employing N-sensitive spectral reflectance indices. During three growing seasons 2013-2015, field experiment at two experimental sites combining application of distinct N doses (0 (N0), 35 (N35), 70 (N70), and 140 (N140) kg N haMINUS SIGN 1) and two stable forms of organic C (lignohumate and compost) was established to measure N uptake by winter wheat and its leaching to subsoil layers. The spectral reflectance at canopy level was measured simultaneously with N content in leaf dry matter at the beginning of the grain filling phase. At full maturity, the above-ground biomass, grain yield, and grain protein content were evaluated. That data was used to calculate N uptake in grain. The N140 dose led to increased N uptake by grain of 64% and 73% in the wetter years 2013 and 2014, respectively, and even by 118% in the drier year 2015 in comparison with the N0 treatment. N leaching to subsoil increased substantially with higher N dose, but only in wetter years 2013 (by 74%) and 2014 (by 87%). By contrast, no effect of N dose on leached N was found in the dry year 2015. The application of organic C along with the N140 dose substantially reduced N leaching by 26% and 29% in 2014 and 2015, respectively. Moreover, we demonstrated that normalized red-edge spectral reflectance index (NRERI) is able to predict N uptake by wheat and it can serve as an indicator of N leaching in heavy-rainfall years. Our results thus point towards possible agronomic practices and use of remote-sensing techniques to reduce groundwater contamination by N-based fertilizers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
—
Svazek periodika
717
Číslo periodika v rámci svazku
15 May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
137058
Kód UT WoS článku
000519994800011
EID výsledku v databázi Scopus
2-s2.0-85079199657