Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43918613" target="_blank" >RIV/62156489:43210/20:43918613 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/20:PU138467
Výsledek na webu
<a href="https://doi.org/10.1002/chem.202004250" target="_blank" >https://doi.org/10.1002/chem.202004250</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/chem.202004250" target="_blank" >10.1002/chem.202004250</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode
Popis výsledku v původním jazyce
Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.
Název v anglickém jazyce
Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode
Popis výsledku anglicky
Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry-A European Journal
ISSN
0947-6539
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
67
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
15746-15753
Kód UT WoS článku
000587509600001
EID výsledku v databázi Scopus
2-s2.0-85096659623