Atomic Layer Deposition of Electrocatalytic Insulator Al2O3 on Three-Dimensional Printed Nanocarbons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43919216" target="_blank" >RIV/62156489:43210/21:43919216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/21:PU140645
Výsledek na webu
<a href="https://doi.org/10.1021/acsnano.0c06961" target="_blank" >https://doi.org/10.1021/acsnano.0c06961</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsnano.0c06961" target="_blank" >10.1021/acsnano.0c06961</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomic Layer Deposition of Electrocatalytic Insulator Al2O3 on Three-Dimensional Printed Nanocarbons
Popis výsledku v původním jazyce
The advantages of three-dimensional (3D) printing technologies, such as rapid-prototyping and the freedom to customize electrodes in any design, have elevated the benchmark of conventional electrochemical studies. Furthermore, the 3D printed electrodes conveniently accommodate other active layers for diverse applications such as energy storage, catalysis, and sensors. Nevertheless, to enhance a complex 3D structure while preserving the fine morphology, conformal deposition by atomic layer deposition (ALD) technique is a powerful solution. Herein, we present the concept of coating Al2O3 by ALD with different thicknesses from 20 to 120 cycles on the 3D printed nanocarbon/PLA electrodes for the electrocatalytic oxidation of catechol as an important biomarker. Overall, 80 ALD cycle Al2O3 achieved an optimum thickness for catechol electrocatalysis. This is resonated with the enhanced adsorption of catechol at the electrode surface and efficient electron transfer, according to the two-proton, two-electron-transfer mechanism, as well as for the passivation of surface defects of the nanocarbon electrode. This work compellingly demonstrates the prospect of 3D printed electrodes modified by a functional layer utilizing a low-temperature ALD process that can be extended to other arbitrary surfaces.
Název v anglickém jazyce
Atomic Layer Deposition of Electrocatalytic Insulator Al2O3 on Three-Dimensional Printed Nanocarbons
Popis výsledku anglicky
The advantages of three-dimensional (3D) printing technologies, such as rapid-prototyping and the freedom to customize electrodes in any design, have elevated the benchmark of conventional electrochemical studies. Furthermore, the 3D printed electrodes conveniently accommodate other active layers for diverse applications such as energy storage, catalysis, and sensors. Nevertheless, to enhance a complex 3D structure while preserving the fine morphology, conformal deposition by atomic layer deposition (ALD) technique is a powerful solution. Herein, we present the concept of coating Al2O3 by ALD with different thicknesses from 20 to 120 cycles on the 3D printed nanocarbon/PLA electrodes for the electrocatalytic oxidation of catechol as an important biomarker. Overall, 80 ALD cycle Al2O3 achieved an optimum thickness for catechol electrocatalysis. This is resonated with the enhanced adsorption of catechol at the electrode surface and efficient electron transfer, according to the two-proton, two-electron-transfer mechanism, as well as for the passivation of surface defects of the nanocarbon electrode. This work compellingly demonstrates the prospect of 3D printed electrodes modified by a functional layer utilizing a low-temperature ALD process that can be extended to other arbitrary surfaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Nano
ISSN
1936-0851
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
686-697
Kód UT WoS článku
000613942700048
EID výsledku v databázi Scopus
2-s2.0-85099651065