Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Use of Stability Statistics to Analyze Genotype x Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43919330" target="_blank" >RIV/62156489:43210/21:43919330 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s42106-020-00126-0" target="_blank" >https://doi.org/10.1007/s42106-020-00126-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s42106-020-00126-0" target="_blank" >10.1007/s42106-020-00126-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Use of Stability Statistics to Analyze Genotype x Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems

  • Popis výsledku v původním jazyce

    Due to environmental diversity, genotype performance for yield and stability is essential for crop improvement. The GGE biplot, and 11 parametric and non-parametric stability models were employed to evaluate 23 wheat (Triticum aestivum L.) genotypes, tested in randomized complete block trials across two contrasting fields (sandy and loamy) and four seasons. The sandy field yielded half compared to the loamy field, reflecting relatively low- and high-input environments, respectively. Analysis of variance showed significant differences between genotypes for grain yield and crossover genotype ranking across environments; the loamy field was more representative of an overall genotype performance. The stability models resulted in diverse genotype classification and were distinguished into two separate groups. The first group comprised measures that consider both G and GE focusing on the agronomic aspect of stability and high-yielding ability. The second group included tools that consider only GE focusing on the static aspect of stability and characterized most of the high-performing genotypes as undesirable. The GGE biplot highlighted genotypes that were characterized as either desirable or undesirable following most models in both groups. Therefore, the GGE biplot presented an effective statistical tool for assessing wheat genotypes in terms of general and specific adaptation without overlooking yielding ability. It is suggested the preference of favorable experimental conditions and application of the GGE model to identify genotypes that are more promising for stable performance across wide agroecosystems.

  • Název v anglickém jazyce

    The Use of Stability Statistics to Analyze Genotype x Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems

  • Popis výsledku anglicky

    Due to environmental diversity, genotype performance for yield and stability is essential for crop improvement. The GGE biplot, and 11 parametric and non-parametric stability models were employed to evaluate 23 wheat (Triticum aestivum L.) genotypes, tested in randomized complete block trials across two contrasting fields (sandy and loamy) and four seasons. The sandy field yielded half compared to the loamy field, reflecting relatively low- and high-input environments, respectively. Analysis of variance showed significant differences between genotypes for grain yield and crossover genotype ranking across environments; the loamy field was more representative of an overall genotype performance. The stability models resulted in diverse genotype classification and were distinguished into two separate groups. The first group comprised measures that consider both G and GE focusing on the agronomic aspect of stability and high-yielding ability. The second group included tools that consider only GE focusing on the static aspect of stability and characterized most of the high-performing genotypes as undesirable. The GGE biplot highlighted genotypes that were characterized as either desirable or undesirable following most models in both groups. Therefore, the GGE biplot presented an effective statistical tool for assessing wheat genotypes in terms of general and specific adaptation without overlooking yielding ability. It is suggested the preference of favorable experimental conditions and application of the GGE model to identify genotypes that are more promising for stable performance across wide agroecosystems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK1910269" target="_blank" >QK1910269: Adaptační potenciál odolnosti pšenice k suchu, horku a mrazu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Plant Production

  • ISSN

    1735-6814

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    11

  • Strana od-do

    261-271

  • Kód UT WoS článku

    000617131700001

  • EID výsledku v databázi Scopus

    2-s2.0-85100750272