Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43919731" target="_blank" >RIV/62156489:43210/21:43919731 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/21:PU141240 RIV/62157124:16810/21:43879127
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.202101178" target="_blank" >https://doi.org/10.1002/adfm.202101178</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202101178" target="_blank" >10.1002/adfm.202101178</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties
Popis výsledku v původním jazyce
Bacterial biofilms are multicellular communities firmly attached to solid extracellular substrates. They are considered the primary cause of huge economic losses, from medicine due to medical implants' failure to large infrastructure due to enhanced pipe corrosion. Therefore, their eradication is highly desirable. Here, the preparation of ZnO self-propelled micromotors is reported, programming their morphology and motion properties through Ag doping. The ZnO:Ag micromotors actively move upon light irradiation via a self-electrophoretic mechanism, showing excellent light-controlled on/off switching motion. At the same time, the rapid and effective removal of both gram-positive and gram-negative bacteria biofilms from the solid surface is demonstrated, exploiting the well-known antibacterial activity of both Ag and ZnO as well as the enhanced diffusion of the micromotors. The new concept for the low-cost and scalable preparation of chemically programmable Ag-doped ZnO micromotors here illustrated opens a new route toward the formulation of a new class of light-driven semiconducting self-propelled micromotors for environmental applications.
Název v anglickém jazyce
Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties
Popis výsledku anglicky
Bacterial biofilms are multicellular communities firmly attached to solid extracellular substrates. They are considered the primary cause of huge economic losses, from medicine due to medical implants' failure to large infrastructure due to enhanced pipe corrosion. Therefore, their eradication is highly desirable. Here, the preparation of ZnO self-propelled micromotors is reported, programming their morphology and motion properties through Ag doping. The ZnO:Ag micromotors actively move upon light irradiation via a self-electrophoretic mechanism, showing excellent light-controlled on/off switching motion. At the same time, the rapid and effective removal of both gram-positive and gram-negative bacteria biofilms from the solid surface is demonstrated, exploiting the well-known antibacterial activity of both Ag and ZnO as well as the enhanced diffusion of the micromotors. The new concept for the low-cost and scalable preparation of chemically programmable Ag-doped ZnO micromotors here illustrated opens a new route toward the formulation of a new class of light-driven semiconducting self-propelled micromotors for environmental applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007314" target="_blank" >EF16_025/0007314: Multioborový výzkum pro zvýšení aplikačního potenciálu nanomateriálů v zemědělské praxi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
27
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
2101178
Kód UT WoS článku
000641908100001
EID výsledku v databázi Scopus
2-s2.0-85104588346