Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43919804" target="_blank" >RIV/62156489:43210/21:43919804 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/21:PU141620 RIV/00216224:14740/21:00124434
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.202101510" target="_blank" >https://doi.org/10.1002/adfm.202101510</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202101510" target="_blank" >10.1002/adfm.202101510</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots
Popis výsledku v původním jazyce
The increasing use of polymers has led to an uncontrollable accumulation of polymer waste in the environment, evidencing the urgent need for effective and definitive strategies to degrade them. Here, self-propelled light-powered magnetic field-navigable hematite/metal Janus microrobots that can actively move, capture, and degrade polymers are presented. Janus microrobots are fabricated by asymmetrically depositing different metals on hematite microspheres prepared by low-cost and large-scale chemical synthesis. All microrobots exhibit fuel-free motion capability, with light-controlled on/off switching of motion and magnetic field-controlled directionality. Higher speeds are observed for bimetallic coatings with respect to single metals. This is due to their larger mixed potential difference with hematite as indicated by Tafel measurements. As a model for polymers, the total degradation of high molecular weight polyethylene glycol is demonstrated by matrix-assisted laser desorption/ionization mass spectrometry. This result is attributed to the active motion of microrobots, enhanced electrostatic capture of polymer chains, improved charge separation at the hematite/metal interface, and catalyzed photo-Fenton reaction. This work opens the route toward the degradation of polymers and plastics in water using light.
Název v anglickém jazyce
Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots
Popis výsledku anglicky
The increasing use of polymers has led to an uncontrollable accumulation of polymer waste in the environment, evidencing the urgent need for effective and definitive strategies to degrade them. Here, self-propelled light-powered magnetic field-navigable hematite/metal Janus microrobots that can actively move, capture, and degrade polymers are presented. Janus microrobots are fabricated by asymmetrically depositing different metals on hematite microspheres prepared by low-cost and large-scale chemical synthesis. All microrobots exhibit fuel-free motion capability, with light-controlled on/off switching of motion and magnetic field-controlled directionality. Higher speeds are observed for bimetallic coatings with respect to single metals. This is due to their larger mixed potential difference with hematite as indicated by Tafel measurements. As a model for polymers, the total degradation of high molecular weight polyethylene glycol is demonstrated by matrix-assisted laser desorption/ionization mass spectrometry. This result is attributed to the active motion of microrobots, enhanced electrostatic capture of polymer chains, improved charge separation at the hematite/metal interface, and catalyzed photo-Fenton reaction. This work opens the route toward the degradation of polymers and plastics in water using light.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
2101510
Kód UT WoS článku
000645561700001
EID výsledku v databázi Scopus
2-s2.0-85105169478