Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F23%3A43924231" target="_blank" >RIV/62156489:43210/23:43924231 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/agriculture13101981" target="_blank" >https://doi.org/10.3390/agriculture13101981</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agriculture13101981" target="_blank" >10.3390/agriculture13101981</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change
Popis výsledku v původním jazyce
Climatic and soil conditions are changing in response to the increasing human impact. This requires the introduction of low-cost, low-emission, but effective technologies in the field cultivation of crops, in turn requiring and justifying research in this area. In laboratory tests and field studies, the production and environmental effects of strip-till and the application of microgranular fertilisers with a gelling component were determined (and, in particular, their use in combination as a plant cultivation technology). These effects were measured in terms of soil properties, the biomass production, and the yields of maize (Zea mays L.), spring barley (Hordeum vulgare L.), and winter rape (Brassica napus L.). Fertiliser microgranules with a gelling agent absorbed water in the amount of 118.6–124.7% of fertiliser mass and increased the volumetric moisture content of the soil in the layer in which they were applied (0–7.5 cm) by 3.0–3.9 percentage points compared to the soil moisture without fertiliser. Strip tillage with the application of fertilisers with a gelling agent significantly increased the amount of water in the soil during the sowing period for winter and spring plants and reduced the CO2 emissions from the soil relative to the conventional tillage without microgranular fertiliser. The biomass of maize, spring barley, and winter rape before flowering, as well as the yields of these plants, were higher when cultivated using strip-till and fertilisers with gelling agents than when ploughed with a mouldboard plough without the use of microgranulated fertilisers. This technology also increased the number of microorganisms, including bacteria, actinobacteria, and filamentous fungi in the soil after harvesting compared to the unfertilised, ploughed soil. Strip tillage and microgranulated fertilisers containing a gelling agent can thus reduce the environmental pressure exerted by agriculture and reduce the risk of climate change, as well as being a way of adapting agriculture to climate change.
Název v anglickém jazyce
Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change
Popis výsledku anglicky
Climatic and soil conditions are changing in response to the increasing human impact. This requires the introduction of low-cost, low-emission, but effective technologies in the field cultivation of crops, in turn requiring and justifying research in this area. In laboratory tests and field studies, the production and environmental effects of strip-till and the application of microgranular fertilisers with a gelling component were determined (and, in particular, their use in combination as a plant cultivation technology). These effects were measured in terms of soil properties, the biomass production, and the yields of maize (Zea mays L.), spring barley (Hordeum vulgare L.), and winter rape (Brassica napus L.). Fertiliser microgranules with a gelling agent absorbed water in the amount of 118.6–124.7% of fertiliser mass and increased the volumetric moisture content of the soil in the layer in which they were applied (0–7.5 cm) by 3.0–3.9 percentage points compared to the soil moisture without fertiliser. Strip tillage with the application of fertilisers with a gelling agent significantly increased the amount of water in the soil during the sowing period for winter and spring plants and reduced the CO2 emissions from the soil relative to the conventional tillage without microgranular fertiliser. The biomass of maize, spring barley, and winter rape before flowering, as well as the yields of these plants, were higher when cultivated using strip-till and fertilisers with gelling agents than when ploughed with a mouldboard plough without the use of microgranulated fertilisers. This technology also increased the number of microorganisms, including bacteria, actinobacteria, and filamentous fungi in the soil after harvesting compared to the unfertilised, ploughed soil. Strip tillage and microgranulated fertilisers containing a gelling agent can thus reduce the environmental pressure exerted by agriculture and reduce the risk of climate change, as well as being a way of adapting agriculture to climate change.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agriculture
ISSN
2077-0472
e-ISSN
2077-0472
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
1981
Kód UT WoS článku
001099624400001
EID výsledku v databázi Scopus
2-s2.0-85175034972