Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F16%3A43910917" target="_blank" >RIV/62156489:43410/16:43910917 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5194/isprsarchives-XLI-B7-17-2016" target="_blank" >http://dx.doi.org/10.5194/isprsarchives-XLI-B7-17-2016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/isprsarchives-XLI-B7-17-2016" target="_blank" >10.5194/isprsarchives-XLI-B7-17-2016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests
Popis výsledku v původním jazyce
In this study estimation of tree damage from a windthrow event using feature detection on RGB high resolution imagery is assessed. An accurate quantitative assessment of the damage in terms of volume is important and can be done by ground sampling, which is notably expensive and time-consuming, or by manual interpretation and analyses of aerial images. This latter manual method also requires an expert operator investing time to manually detect damaged trees and apply relation functions between measures and volume which are also error-prone. In the proposed method RGB images with 0.2 m ground sample distance are analysed using an adaptive template matching method. Ten images corresponding to ten separate study areas are tested. A 13 x 13 pixels kernel with a simplified lin ear-feature representation of a cylinder is applied at different rotation angles (from 0o to 170o at 10o steps). The higher values of the normalized cross-correlation (NCC) of all angles are recorded for each pixel for each image. Several features are tested: percentiles (75, 80, 85, 90, 95, 99, max) and sum and number of pixels with NCC above 0.55. Three regression methods are tested, multiple regression (mr), support vector machines (SVM) with linear kernel and random forests. The first two methods gave the best results. The ground-truth was acquired by ground sampling, and total volumes of damaged trees are estimated for each of the 10 areas. Damaged volumes in the ten areas range from c. 1.8 x 102 m3 to c. 1.2 x 104 m3. Regression results show that smv regression method over the sum gives an R-squared of 0.92, a mean of absolute errors (MAE) of 255 m3 and a relative absolute error (RAE) of 34% using leave-one-out cross validation from the 10 observations. These initial results are encouraging and support further investigations on more finely tuned kernel template metrics to define an unsupervised image analysis process to automatically assess forest damage from windthrow.
Název v anglickém jazyce
Kernel feature cross-correlation for unsupervised quantification of damage from windthrow in forests
Popis výsledku anglicky
In this study estimation of tree damage from a windthrow event using feature detection on RGB high resolution imagery is assessed. An accurate quantitative assessment of the damage in terms of volume is important and can be done by ground sampling, which is notably expensive and time-consuming, or by manual interpretation and analyses of aerial images. This latter manual method also requires an expert operator investing time to manually detect damaged trees and apply relation functions between measures and volume which are also error-prone. In the proposed method RGB images with 0.2 m ground sample distance are analysed using an adaptive template matching method. Ten images corresponding to ten separate study areas are tested. A 13 x 13 pixels kernel with a simplified lin ear-feature representation of a cylinder is applied at different rotation angles (from 0o to 170o at 10o steps). The higher values of the normalized cross-correlation (NCC) of all angles are recorded for each pixel for each image. Several features are tested: percentiles (75, 80, 85, 90, 95, 99, max) and sum and number of pixels with NCC above 0.55. Three regression methods are tested, multiple regression (mr), support vector machines (SVM) with linear kernel and random forests. The first two methods gave the best results. The ground-truth was acquired by ground sampling, and total volumes of damaged trees are estimated for each of the 10 areas. Damaged volumes in the ten areas range from c. 1.8 x 102 m3 to c. 1.2 x 104 m3. Regression results show that smv regression method over the sum gives an R-squared of 0.92, a mean of absolute errors (MAE) of 255 m3 and a relative absolute error (RAE) of 34% using leave-one-out cross validation from the 10 observations. These initial results are encouraging and support further investigations on more finely tuned kernel template metrics to define an unsupervised image analysis process to automatically assess forest damage from windthrow.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XXIII ISPRS Congress: Technical Commission VII
ISBN
—
ISSN
1682-1750
e-ISSN
—
Počet stran výsledku
6
Strana od-do
17-22
Název nakladatele
Copernicus GmbH
Místo vydání
Göttingen
Místo konání akce
Praha
Datum konání akce
12. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000393155900003