Comparison of parametric and nonparametric methods for modeling height-diameter relationships
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F17%3A43910797" target="_blank" >RIV/62156489:43410/17:43910797 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3832/ifor1928-009" target="_blank" >https://doi.org/10.3832/ifor1928-009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3832/ifor1928-009" target="_blank" >10.3832/ifor1928-009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of parametric and nonparametric methods for modeling height-diameter relationships
Popis výsledku v původním jazyce
This paper focuses on the problem of regionalization of the height-diameter model at the stand level. To this purpose, we selected two different modeling techniques. As a parametric method, we chose a linear mixed effects model (LME) with calibrated conditional prediction, whose calibration was carried out on randomly selected trees either close to mean diameter or within three diameter intervals throughout the diameter range. As a nonparametric method, the technique of classification and regression trees (CART) was chosen. These two methods were also compared with the local model created by ordinary least squares regression. The results show that LME with calibrated conditional prediction based on measurements of height at three diameter intervals provided results very close to the local model, especially when six to nine trees are measured. We recommend this technique for the regionalization of the global model. The CART method provided worse results than LME, with the exception of parameters of the residual distribution. Nevertheless, the latter approach is very user-friendly, as the regression tree creation and especially its interpretation are relatively simple, and could be recommended when larger deviations are allowed.
Název v anglickém jazyce
Comparison of parametric and nonparametric methods for modeling height-diameter relationships
Popis výsledku anglicky
This paper focuses on the problem of regionalization of the height-diameter model at the stand level. To this purpose, we selected two different modeling techniques. As a parametric method, we chose a linear mixed effects model (LME) with calibrated conditional prediction, whose calibration was carried out on randomly selected trees either close to mean diameter or within three diameter intervals throughout the diameter range. As a nonparametric method, the technique of classification and regression trees (CART) was chosen. These two methods were also compared with the local model created by ordinary least squares regression. The results show that LME with calibrated conditional prediction based on measurements of height at three diameter intervals provided results very close to the local model, especially when six to nine trees are measured. We recommend this technique for the regionalization of the global model. The CART method provided worse results than LME, with the exception of parameters of the residual distribution. Nevertheless, the latter approach is very user-friendly, as the regression tree creation and especially its interpretation are relatively simple, and could be recommended when larger deviations are allowed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
iForest
ISSN
1971-7458
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000395862000001
EID výsledku v databázi Scopus
2-s2.0-85011846574