Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Are Dracaena nebulophytes able to drink atmospheric water?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F17%3A43911142" target="_blank" >RIV/62156489:43410/17:43911142 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://doi.org/10.1016/j.envexpbot.2017.04.005" target="_blank" >http://doi.org/10.1016/j.envexpbot.2017.04.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envexpbot.2017.04.005" target="_blank" >10.1016/j.envexpbot.2017.04.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Are Dracaena nebulophytes able to drink atmospheric water?

  • Popis výsledku v původním jazyce

    In arid and semi-arid environments, fog interception as a water acquisition mechanism has been long recognized as an important factor for plant survival. The &quot;narrow-leaf syndrome&quot; increases water absorption from horizontal precipitation and is typical of nebulophytes characterized by dense rosette type crowns, to which also Dracaena species belong. In this paper, we demonstrate that Dracaena nebulophytes are able to direct water intercepted from fog through the leaf axils into their succulent woody organs to be stored for later use. We conducted leaf axil watering (LAW) experiments in four young Dracaena plants (two Dracaena cinnabari and two Dracaena draco) while simultaneously measuring sap flow in plant stems using the heat field deformation method. It was assumed that inducing water potential within stems closed to zero would initiate simultaneous bidirectional water transport from the stem to the crown and roots, and that this moment would be reflected in corresponding sap flow. Three hypothetical scenarios of induced water transport imbalance were confirmed by analyzing measured temperature gradients around heated probes and calculating sap flow. Sap flow responses to LAW clearly appeared to be dependent on flow direction prior to water treatments, on the strength of forces driving upward and downward water movement and the quantity of water applied. Intrinsic sap flow changes depicted in the results confirm the hypothesis that the Dracaena species are able to direct atmospheric water through the axils of their leaves to stem tissues. This mechanism of bypassing soil water represents an alternative means of water uptake in plants and is especially important in foggy areas of arid and semi-arid climates.

  • Název v anglickém jazyce

    Are Dracaena nebulophytes able to drink atmospheric water?

  • Popis výsledku anglicky

    In arid and semi-arid environments, fog interception as a water acquisition mechanism has been long recognized as an important factor for plant survival. The &quot;narrow-leaf syndrome&quot; increases water absorption from horizontal precipitation and is typical of nebulophytes characterized by dense rosette type crowns, to which also Dracaena species belong. In this paper, we demonstrate that Dracaena nebulophytes are able to direct water intercepted from fog through the leaf axils into their succulent woody organs to be stored for later use. We conducted leaf axil watering (LAW) experiments in four young Dracaena plants (two Dracaena cinnabari and two Dracaena draco) while simultaneously measuring sap flow in plant stems using the heat field deformation method. It was assumed that inducing water potential within stems closed to zero would initiate simultaneous bidirectional water transport from the stem to the crown and roots, and that this moment would be reflected in corresponding sap flow. Three hypothetical scenarios of induced water transport imbalance were confirmed by analyzing measured temperature gradients around heated probes and calculating sap flow. Sap flow responses to LAW clearly appeared to be dependent on flow direction prior to water treatments, on the strength of forces driving upward and downward water movement and the quantity of water applied. Intrinsic sap flow changes depicted in the results confirm the hypothesis that the Dracaena species are able to direct atmospheric water through the axils of their leaves to stem tissues. This mechanism of bypassing soil water represents an alternative means of water uptake in plants and is especially important in foggy areas of arid and semi-arid climates.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental and Experimental Botany

  • ISSN

    0098-8472

  • e-ISSN

  • Svazek periodika

    139

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    57-66

  • Kód UT WoS článku

    000403736600007

  • EID výsledku v databázi Scopus

    2-s2.0-85018523080