Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F17%3A43911225" target="_blank" >RIV/62156489:43410/17:43911225 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/f8050170" target="_blank" >http://dx.doi.org/10.3390/f8050170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f8050170" target="_blank" >10.3390/f8050170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data
Popis výsledku v původním jazyce
Airborne laser scanner (ALS) data are used operationally to support field inventories and enhance the accuracy of forest biomass estimates. Modelling the relationship between ALS and field data is a fundamental step of such applications and the quality of the model is essential for the final accuracy of the estimates. Different modelling approaches and variable transformations have been advocated in the existing literature, but comparisons are few or non-existent. In the present study, two main approaches to modelling were compared: the empirical and semi-empirical approaches. Evaluation of model performance was conducted using a conventional evaluation criterion, i.e., the mean square deviation (MSD). In addition, a novel evaluation criterion, the model error (ME), was proposed. The ME was constructed by combining a MSD expression and a model-based variance estimate. For the empirical approach, multiple regression models were developed with two alternative transformation strategies: square root transformation of the response, and natural logarithmic transformation of both response and predictors. For the semi-empirical approach, a nonlinear regression of a power model form was chosen. Two alternative predictor variables, mean canopy height and top canopy height, were used separately. Results showed that the semi-empirical approach resulted in the smallest MSD in three of five study sites. The empirical approach resulted in smaller ME in the temperate and boreal biomes, while the semi-empirical approach resulted in smaller ME in the tropical biomes.
Název v anglickém jazyce
Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data
Popis výsledku anglicky
Airborne laser scanner (ALS) data are used operationally to support field inventories and enhance the accuracy of forest biomass estimates. Modelling the relationship between ALS and field data is a fundamental step of such applications and the quality of the model is essential for the final accuracy of the estimates. Different modelling approaches and variable transformations have been advocated in the existing literature, but comparisons are few or non-existent. In the present study, two main approaches to modelling were compared: the empirical and semi-empirical approaches. Evaluation of model performance was conducted using a conventional evaluation criterion, i.e., the mean square deviation (MSD). In addition, a novel evaluation criterion, the model error (ME), was proposed. The ME was constructed by combining a MSD expression and a model-based variance estimate. For the empirical approach, multiple regression models were developed with two alternative transformation strategies: square root transformation of the response, and natural logarithmic transformation of both response and predictors. For the semi-empirical approach, a nonlinear regression of a power model form was chosen. Two alternative predictor variables, mean canopy height and top canopy height, were used separately. Results showed that the semi-empirical approach resulted in the smallest MSD in three of five study sites. The empirical approach resulted in smaller ME in the temperate and boreal biomes, while the semi-empirical approach resulted in smaller ME in the tropical biomes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forests
ISSN
1999-4907
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
"nestrankovano"
Kód UT WoS článku
000404099300032
EID výsledku v databázi Scopus
2-s2.0-85019958838