On reliable identification of factors influencing wildlife-vehicle collisions along roads
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F19%3A43915309" target="_blank" >RIV/62156489:43410/19:43915309 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44994575:_____/19:N0000019
Výsledek na webu
<a href="https://doi.org/10.1016/j.jenvman.2019.02.076" target="_blank" >https://doi.org/10.1016/j.jenvman.2019.02.076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2019.02.076" target="_blank" >10.1016/j.jenvman.2019.02.076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On reliable identification of factors influencing wildlife-vehicle collisions along roads
Popis výsledku v původním jazyce
Wildlife-vehicle collisions (WVCs) pose a serious global issue. Factors influencing the occurrence of WVC along roads can be divided in general into two groups: spatially random and non-random. The latter group consists of local factors which act at specific places, whereas the former group consists of globally acting factors. We analyzed 27,142 WVC records (roe deer and wild boar), which took place between 2012 and 2016 on Czech roads. Statistically significant clusters of WVCs occurrence were identified using the clustering (KDE+) approach. Local factors were consequently measured for the 75 most important clusters as cases and the same number of single WVCs outside clusters as controls, and identified by the use of odds ratio, Bayesian inference and logistic regression. Subsequently, a simulation study randomly distributing WVC in clusters into case and control groups was performed to highlight the importance of the clustering approach. All statistically significant clusters with roe deer (wild boar) contained 34% (27%) of all records related to this species. The overall length of the respective clusters covered 0.982% (0.177%) of the analyzed road network. The results suggest that the most pronounced signal identifying the statistically significant local factors is achieved when WVCs were divided according to their occurrence in clusters and outside clusters. We conclude that application of a clustering approach should precede regression modeling in order to reliably identify the local factors influencing spatially non-random occurrence of WVCs along the transportation infrastructure.
Název v anglickém jazyce
On reliable identification of factors influencing wildlife-vehicle collisions along roads
Popis výsledku anglicky
Wildlife-vehicle collisions (WVCs) pose a serious global issue. Factors influencing the occurrence of WVC along roads can be divided in general into two groups: spatially random and non-random. The latter group consists of local factors which act at specific places, whereas the former group consists of globally acting factors. We analyzed 27,142 WVC records (roe deer and wild boar), which took place between 2012 and 2016 on Czech roads. Statistically significant clusters of WVCs occurrence were identified using the clustering (KDE+) approach. Local factors were consequently measured for the 75 most important clusters as cases and the same number of single WVCs outside clusters as controls, and identified by the use of odds ratio, Bayesian inference and logistic regression. Subsequently, a simulation study randomly distributing WVC in clusters into case and control groups was performed to highlight the importance of the clustering approach. All statistically significant clusters with roe deer (wild boar) contained 34% (27%) of all records related to this species. The overall length of the respective clusters covered 0.982% (0.177%) of the analyzed road network. The results suggest that the most pronounced signal identifying the statistically significant local factors is achieved when WVCs were divided according to their occurrence in clusters and outside clusters. We conclude that application of a clustering approach should precede regression modeling in order to reliably identify the local factors influencing spatially non-random occurrence of WVCs along the transportation infrastructure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
—
Svazek periodika
237
Číslo periodika v rámci svazku
1 May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
297-304
Kód UT WoS článku
000465059900033
EID výsledku v databázi Scopus
2-s2.0-85061870444