Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On reliable identification of factors influencing wildlife-vehicle collisions along roads

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F19%3A43915309" target="_blank" >RIV/62156489:43410/19:43915309 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44994575:_____/19:N0000019

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jenvman.2019.02.076" target="_blank" >https://doi.org/10.1016/j.jenvman.2019.02.076</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jenvman.2019.02.076" target="_blank" >10.1016/j.jenvman.2019.02.076</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On reliable identification of factors influencing wildlife-vehicle collisions along roads

  • Popis výsledku v původním jazyce

    Wildlife-vehicle collisions (WVCs) pose a serious global issue. Factors influencing the occurrence of WVC along roads can be divided in general into two groups: spatially random and non-random. The latter group consists of local factors which act at specific places, whereas the former group consists of globally acting factors. We analyzed 27,142 WVC records (roe deer and wild boar), which took place between 2012 and 2016 on Czech roads. Statistically significant clusters of WVCs occurrence were identified using the clustering (KDE+) approach. Local factors were consequently measured for the 75 most important clusters as cases and the same number of single WVCs outside clusters as controls, and identified by the use of odds ratio, Bayesian inference and logistic regression. Subsequently, a simulation study randomly distributing WVC in clusters into case and control groups was performed to highlight the importance of the clustering approach. All statistically significant clusters with roe deer (wild boar) contained 34% (27%) of all records related to this species. The overall length of the respective clusters covered 0.982% (0.177%) of the analyzed road network. The results suggest that the most pronounced signal identifying the statistically significant local factors is achieved when WVCs were divided according to their occurrence in clusters and outside clusters. We conclude that application of a clustering approach should precede regression modeling in order to reliably identify the local factors influencing spatially non-random occurrence of WVCs along the transportation infrastructure.

  • Název v anglickém jazyce

    On reliable identification of factors influencing wildlife-vehicle collisions along roads

  • Popis výsledku anglicky

    Wildlife-vehicle collisions (WVCs) pose a serious global issue. Factors influencing the occurrence of WVC along roads can be divided in general into two groups: spatially random and non-random. The latter group consists of local factors which act at specific places, whereas the former group consists of globally acting factors. We analyzed 27,142 WVC records (roe deer and wild boar), which took place between 2012 and 2016 on Czech roads. Statistically significant clusters of WVCs occurrence were identified using the clustering (KDE+) approach. Local factors were consequently measured for the 75 most important clusters as cases and the same number of single WVCs outside clusters as controls, and identified by the use of odds ratio, Bayesian inference and logistic regression. Subsequently, a simulation study randomly distributing WVC in clusters into case and control groups was performed to highlight the importance of the clustering approach. All statistically significant clusters with roe deer (wild boar) contained 34% (27%) of all records related to this species. The overall length of the respective clusters covered 0.982% (0.177%) of the analyzed road network. The results suggest that the most pronounced signal identifying the statistically significant local factors is achieved when WVCs were divided according to their occurrence in clusters and outside clusters. We conclude that application of a clustering approach should precede regression modeling in order to reliably identify the local factors influencing spatially non-random occurrence of WVCs along the transportation infrastructure.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Environmental Management

  • ISSN

    0301-4797

  • e-ISSN

  • Svazek periodika

    237

  • Číslo periodika v rámci svazku

    1 May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    297-304

  • Kód UT WoS článku

    000465059900033

  • EID výsledku v databázi Scopus

    2-s2.0-85061870444