Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F21%3A43918439" target="_blank" >RIV/62156489:43410/21:43918439 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11356-020-10633-2" target="_blank" >https://doi.org/10.1007/s11356-020-10633-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11356-020-10633-2" target="_blank" >10.1007/s11356-020-10633-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics
Popis výsledku v původním jazyce
This work aims to synthesize akaganeite nanoparticles (AKNPs) by using microwave and use them to adsorb Congo red dye (CR) from the aqueous solution. The AKNPs with an average particle size of about 50 nm in width and 100 nm in length could be fabricated in 20 min. The effects of pH, CR initial concentration, adsorption time, and adsorbent dosage on the adsorption process were investigated and the artificial neural network (ANN) was used to analyze the adsorption data. The various ANN structures were examined in training the data to find the optimal model. The structure with training function, TRAINLM; adaptation learning function, LARNGDM; transfer function, LOGSIG (in hidden layer) and PURELIN (in output layer); and 10 neutrons in hidden layer having the highest correlation (R2 = 0.996) and the lowest MSE (4.405) is the optimal ANN structure. The consistency between the experimental data and the data predicted by the ANN model showed that the behavior of the adsorption process of CR onto AKNPs under different conditions can be estimated by the ANN model. The adsorption kinetics was studied by fitting the data into pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that the adsorption kinetics obeyed the pseudo-second-order model and governed by several steps. The adsorption isotherms at the different temperatures were studied by fitting the data to Langmuir, Freundlich, and Temkin isotherm models. The R2 obtained from the Langmuir model was above 0.9 and the highest value in three of four temperatures, suggesting that the adsorption isotherms were the best fit to the Langmuir model and the maximum adsorption capacity was estimated to be more than 150 mg/g. Thermodynamic studies suggested that the adsorption of CR onto AKNPs was a spontaneous and endothermic process and physicochemical adsorption. The obtained results indicated the potential application of microwave-synthesize AKNPs for removing organic dyes from aqueous solutions.
Název v anglickém jazyce
Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics
Popis výsledku anglicky
This work aims to synthesize akaganeite nanoparticles (AKNPs) by using microwave and use them to adsorb Congo red dye (CR) from the aqueous solution. The AKNPs with an average particle size of about 50 nm in width and 100 nm in length could be fabricated in 20 min. The effects of pH, CR initial concentration, adsorption time, and adsorbent dosage on the adsorption process were investigated and the artificial neural network (ANN) was used to analyze the adsorption data. The various ANN structures were examined in training the data to find the optimal model. The structure with training function, TRAINLM; adaptation learning function, LARNGDM; transfer function, LOGSIG (in hidden layer) and PURELIN (in output layer); and 10 neutrons in hidden layer having the highest correlation (R2 = 0.996) and the lowest MSE (4.405) is the optimal ANN structure. The consistency between the experimental data and the data predicted by the ANN model showed that the behavior of the adsorption process of CR onto AKNPs under different conditions can be estimated by the ANN model. The adsorption kinetics was studied by fitting the data into pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that the adsorption kinetics obeyed the pseudo-second-order model and governed by several steps. The adsorption isotherms at the different temperatures were studied by fitting the data to Langmuir, Freundlich, and Temkin isotherm models. The R2 obtained from the Langmuir model was above 0.9 and the highest value in three of four temperatures, suggesting that the adsorption isotherms were the best fit to the Langmuir model and the maximum adsorption capacity was estimated to be more than 150 mg/g. Thermodynamic studies suggested that the adsorption of CR onto AKNPs was a spontaneous and endothermic process and physicochemical adsorption. The obtained results indicated the potential application of microwave-synthesize AKNPs for removing organic dyes from aqueous solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Science and Pollution Research
ISSN
0944-1344
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
9133-9145
Kód UT WoS článku
000583130100009
EID výsledku v databázi Scopus
2-s2.0-85094816260