Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F21%3A43920050" target="_blank" >RIV/62156489:43410/21:43920050 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/su13137212" target="_blank" >https://doi.org/10.3390/su13137212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su13137212" target="_blank" >10.3390/su13137212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types
Popis výsledku v původním jazyce
Mineralization of carbon (C) is a burning issue that is regulated by soil attributes. It has direct impacts on crop productivity and quantification of organic residue addition in soil. For better understanding and achievement of potential tillage benefits, a comprehensive scientific understanding of C mineralization is very important. Therefore, a laboratory incubation experiment was conducted to investigate the C mineralization rates and kinetics of crop residues (rice and maize) when applied on the surface (as zero-tillage, ZT) and incorporation (as conventional tillage, CT) in four different soil types (S1 and S2 of Entisol; S3 and S4 of Inceptisols) of West Bengal state, India. Results showed that after 7 days of incubation, there was a rapid phase of decrease in CO2-C fluxes. It continued up to day 14 followed by a sluggish nature of CO2 emission up to day-42, and after that almost levelling off in all subsequent periods up to the end of 126 days of incubation. There was a progressive release of cumulative total C from the soils with an increase in time till the last day of incubation. For every 10% increase in C loss, there was about 0.376 mg/g C mineralization from the applied residue C. It was evident from the kinetic models that C mineralization from the residues followed the exponential model: C = Co(1 - e(-kt)). Similar rate constant (k) values were recorded in both placement methods, but the rate of maximum potential mineralizable (C(0)k) residue C was higher under residue incorporation treatments for both rice and maize residue. However, the rice and maize residues showed almost similar amounts of C mineralized over time when applied on the surface. The future prediction analysis using the equation C = Co(1 - e(-kt)) suggested that the residues incorporated into the soil releases a maximum C irrespective of residue type. We conclude that the residues when incorporated into the soil significantly increases the C footprints through maximum C mineralization; leaving the crop residue on the soil surface reduces the C footprints which helps in achieving sustainability from an environmental perspective.
Název v anglickém jazyce
Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types
Popis výsledku anglicky
Mineralization of carbon (C) is a burning issue that is regulated by soil attributes. It has direct impacts on crop productivity and quantification of organic residue addition in soil. For better understanding and achievement of potential tillage benefits, a comprehensive scientific understanding of C mineralization is very important. Therefore, a laboratory incubation experiment was conducted to investigate the C mineralization rates and kinetics of crop residues (rice and maize) when applied on the surface (as zero-tillage, ZT) and incorporation (as conventional tillage, CT) in four different soil types (S1 and S2 of Entisol; S3 and S4 of Inceptisols) of West Bengal state, India. Results showed that after 7 days of incubation, there was a rapid phase of decrease in CO2-C fluxes. It continued up to day 14 followed by a sluggish nature of CO2 emission up to day-42, and after that almost levelling off in all subsequent periods up to the end of 126 days of incubation. There was a progressive release of cumulative total C from the soils with an increase in time till the last day of incubation. For every 10% increase in C loss, there was about 0.376 mg/g C mineralization from the applied residue C. It was evident from the kinetic models that C mineralization from the residues followed the exponential model: C = Co(1 - e(-kt)). Similar rate constant (k) values were recorded in both placement methods, but the rate of maximum potential mineralizable (C(0)k) residue C was higher under residue incorporation treatments for both rice and maize residue. However, the rice and maize residues showed almost similar amounts of C mineralized over time when applied on the surface. The future prediction analysis using the equation C = Co(1 - e(-kt)) suggested that the residues incorporated into the soil releases a maximum C irrespective of residue type. We conclude that the residues when incorporated into the soil significantly increases the C footprints through maximum C mineralization; leaving the crop residue on the soil surface reduces the C footprints which helps in achieving sustainability from an environmental perspective.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
7212
Kód UT WoS článku
000670979300001
EID výsledku v databázi Scopus
2-s2.0-85109416564