Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F23%3A43923022" target="_blank" >RIV/62156489:43410/23:43923022 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/f14010046" target="_blank" >https://doi.org/10.3390/f14010046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f14010046" target="_blank" >10.3390/f14010046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods
Popis výsledku v původním jazyce
In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.
Název v anglickém jazyce
Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods
Popis výsledku anglicky
In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forests
ISSN
1999-4907
e-ISSN
1999-4907
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
46
Kód UT WoS článku
000915592800001
EID výsledku v databázi Scopus
2-s2.0-85146784466