Cylindrical model of heat transfer in honeycomb structures with microencapsulated phase change material
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F24%3A43926390" target="_blank" >RIV/62156489:43410/24:43926390 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1742-6596/2911/1/012006" target="_blank" >https://doi.org/10.1088/1742-6596/2911/1/012006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/2911/1/012006" target="_blank" >10.1088/1742-6596/2911/1/012006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cylindrical model of heat transfer in honeycomb structures with microencapsulated phase change material
Popis výsledku v původním jazyce
The efficiency of a photovoltaic cell decreases with increased temperature. Excessive overheating caused by the absorption of incident solar radiation reduces the production of electricity. One of the ways to keep the panel cooler is to dissipate the heat from its backside. An aluminium honeycomb structure filled with microencapsulated phase change material (PCM) can dissipate enough heat to reduce overheating and improve the efficiency of the solar cell. Designing of Building's Integrated Photovoltaic systems with PCM requires complex calculations considering wide variety of conditions. Finite element method (FEM) provides a robust tool, but this approach requires a very complex mesh domain due to the thin aluminium wall of the honeycomb structure, as well as iterative calculation process of boundary conditions accounting for complex convective and radiative heat transfer. Both require extensive computation time and FEM are not effective. The paper presents simplified cylindrical heat transfer model, which allows for faster computing with similar results. Comparison of compliance and computation times are included.
Název v anglickém jazyce
Cylindrical model of heat transfer in honeycomb structures with microencapsulated phase change material
Popis výsledku anglicky
The efficiency of a photovoltaic cell decreases with increased temperature. Excessive overheating caused by the absorption of incident solar radiation reduces the production of electricity. One of the ways to keep the panel cooler is to dissipate the heat from its backside. An aluminium honeycomb structure filled with microencapsulated phase change material (PCM) can dissipate enough heat to reduce overheating and improve the efficiency of the solar cell. Designing of Building's Integrated Photovoltaic systems with PCM requires complex calculations considering wide variety of conditions. Finite element method (FEM) provides a robust tool, but this approach requires a very complex mesh domain due to the thin aluminium wall of the honeycomb structure, as well as iterative calculation process of boundary conditions accounting for complex convective and radiative heat transfer. Both require extensive computation time and FEM are not effective. The paper presents simplified cylindrical heat transfer model, which allows for faster computing with similar results. Comparison of compliance and computation times are included.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-12226S" target="_blank" >GA24-12226S: Vývoj pokročilých modelů a metod měření přenosu tepla a vlhkosti ve stavebních konstrukcích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
5
Strana od-do
012006
Název nakladatele
Institute of Physics Publishing Ltd. (IOP)
Místo vydání
Bristol
Místo konání akce
Miskolctapolca
Datum konání akce
4. 9. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—