Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62157124%3A16170%2F16%3A43874079" target="_blank" >RIV/62157124:16170/16:43874079 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/16:00468313 RIV/68081766:_____/16:00462538
Výsledek na webu
<a href="http://dx.doi.org/10.1128/JVI.00247-16" target="_blank" >http://dx.doi.org/10.1128/JVI.00247-16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1128/JVI.00247-16" target="_blank" >10.1128/JVI.00247-16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes
Popis výsledku v původním jazyce
It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses ( family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Název v anglickém jazyce
Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes
Popis výsledku anglicky
It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses ( family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GJ - Choroby a škůdci zvířat, veterinární medicina
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA206%2F09%2F0927" target="_blank" >GA206/09/0927: Vliv zvýšeného kontaktu s člověkem na diverzitu a ekologii jednobuněčných parazitů afrických lidoopů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of virology
ISSN
0022-538X
e-ISSN
—
Svazek periodika
90
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
8531-8541
Kód UT WoS článku
000383761900014
EID výsledku v databázi Scopus
—