Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62157124%3A16170%2F24%3A43881695" target="_blank" >RIV/62157124:16170/24:43881695 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1420-3049/29/17/4044" target="_blank" >https://www.mdpi.com/1420-3049/29/17/4044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules29174044" target="_blank" >10.3390/molecules29174044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
Popis výsledku v původním jazyce
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 mu M. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.
Název v anglickém jazyce
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides
Popis výsledku anglicky
A series of new unique acetylene derivatives of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonamide 3a-f and 6a-f were prepared by reactions of 8-hydroxy- and 8-methoxyquinoline- 5-sulfonyl chlorides with acetylene derivatives of amine. A series of new hybrid systems containing quinoline and 1,2,3-triazole systems 7a-h were obtained by reactions of acetylene derivatives of quinoline-5-sulfonamide 6a-d with organic azides. The structures of the obtained compounds were confirmed by 1H and 13C NMR spectroscopy and HR-MS spectrometry. The obtained quinoline derivatives 3a-f and 6a-f and 1,2,3-triazole derivatives 7a-h were tested for their anticancer and antimicrobial activity. Human amelanotic melanoma cells (C-32), human breast adenocarcinoma cells (MDA-MB-231), and human lung adenocarcinoma cells (A549) were selected as tested cancer lines, while cytotoxicity was investigated on normal human dermal fibroblasts (HFF-1). All the compounds were also tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis. Only the acetylene derivatives of 8-hydroxyquinoline-5-sulfonamide 3a-f were shown to be biologically active, and 8-hydroxy-N-methyl-N-(prop-2-yn-1-yl)quinoline-5-sulfonamide (3c) showed the highest activity against all three cancer lines and MRSA isolates. Its efficacies were comparable to those of cisplatin/doxorubicin and oxacillin/ciprofloxacin. In the non-cancer HFF-1 line, the compound showed no toxicity up to an IC50 of 100 mu M. In additional tests, compound 3c decreased the expression of H3, increased the transcriptional activity of cell cycle regulators (P53 and P21 proteins), and altered the expression of BCL-2 and BAX genes in all cancer lines. The unsubstituted phenolic group at position 8 of the quinoline is the key structural fragment necessary for biological activity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40301 - Veterinary science
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Molecules
ISSN
1420-3049
e-ISSN
1420-3049
Svazek periodika
29
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001310944400001
EID výsledku v databázi Scopus
—