Rapid Models for Predicting the Low-Temperature Behavior of Diesel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F19%3AN0000010" target="_blank" >RIV/62243136:_____/19:N0000010 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62243136:_____/19:N0000033
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/ceat.201800549" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/ceat.201800549</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/ceat.201800549" target="_blank" >10.1002/ceat.201800549</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rapid Models for Predicting the Low-Temperature Behavior of Diesel
Popis výsledku v původním jazyce
"The cold filtration plugging point (CFPP) is the method most commonly applied to characterize the low-temperature behavior of diesel and its components. However, this method is time-consuming and does not have good repeatability, especially for samples with very low CFPP values like kerosene, light cycle oil, etc. Three new models for CFPP prediction were developed and compared: a combined density and distillation curve, differential scanning calorimetry, and nearinfrared. A set of 133 samples of diesel components were used to create the models, containing streams from different sources and levels of treatment. A further 28 diesel samples were used to validate and compare the models. All three models not only were faster than the standard method but also were found to be in good agreement with CFPP values. Each model has its own particular advantages suiting it to a particular type of diesel sample and stage of the diesel production process."
Název v anglickém jazyce
Rapid Models for Predicting the Low-Temperature Behavior of Diesel
Popis výsledku anglicky
"The cold filtration plugging point (CFPP) is the method most commonly applied to characterize the low-temperature behavior of diesel and its components. However, this method is time-consuming and does not have good repeatability, especially for samples with very low CFPP values like kerosene, light cycle oil, etc. Three new models for CFPP prediction were developed and compared: a combined density and distillation curve, differential scanning calorimetry, and nearinfrared. A set of 133 samples of diesel components were used to create the models, containing streams from different sources and levels of treatment. A further 28 diesel samples were used to validate and compare the models. All three models not only were faster than the standard method but also were found to be in good agreement with CFPP values. Each model has its own particular advantages suiting it to a particular type of diesel sample and stage of the diesel production process."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1606" target="_blank" >LO1606: Rozvoj Centra UniCRE</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering & Technology
ISSN
1521-4125
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
735-743
Kód UT WoS článku
000462235100004
EID výsledku v databázi Scopus
2-s2.0-85061305939