The role of Zn in the Cu-Zn-Al mixed oxide catalyst and its effect on glycerol hydrogenolysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62243136%3A_____%2F22%3AN0000002" target="_blank" >RIV/62243136:_____/22:N0000002 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216275:25310/22:39919654
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S2468823122006824" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S2468823122006824</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mcat.2022.112796" target="_blank" >10.1016/j.mcat.2022.112796</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The role of Zn in the Cu-Zn-Al mixed oxide catalyst and its effect on glycerol hydrogenolysis
Popis výsledku v původním jazyce
A series of Cu-Zn-Al oxide catalysts reduced in H2 was tested in glycerol hydrogenolysis in a stirred batch autoclave at 230°C. The catalysts were prepared by the precipitation – calcination method from layered double hydroxides (LDH) structures. The oxide forms of the catalysts were obtained by calcination of these structures at programmed temperatures, up to 350°C. The catalysts were characterized by the following methods: X-ray diffraction (XRD), temperature-programmed reduction (TPR), thermogravimetric analyses (TGA), N2-physisorption and temperature programmed desorption of ammonia (NH3-TPD). It was found that Zn plays acts as a structure modifier, influencing Cu dispersion and particle size. Consequently, Zn has an impact on the catalyst activity. In particular, the Zn effect had its maximum at the concentration corresponding to a ratio of Zn/(Cu+Al) = 0.35 where conversion of 65% and the selectivity to 1,2-propanediol of 70% was achieved after 60 min of reaction time
Název v anglickém jazyce
The role of Zn in the Cu-Zn-Al mixed oxide catalyst and its effect on glycerol hydrogenolysis
Popis výsledku anglicky
A series of Cu-Zn-Al oxide catalysts reduced in H2 was tested in glycerol hydrogenolysis in a stirred batch autoclave at 230°C. The catalysts were prepared by the precipitation – calcination method from layered double hydroxides (LDH) structures. The oxide forms of the catalysts were obtained by calcination of these structures at programmed temperatures, up to 350°C. The catalysts were characterized by the following methods: X-ray diffraction (XRD), temperature-programmed reduction (TPR), thermogravimetric analyses (TGA), N2-physisorption and temperature programmed desorption of ammonia (NH3-TPD). It was found that Zn plays acts as a structure modifier, influencing Cu dispersion and particle size. Consequently, Zn has an impact on the catalyst activity. In particular, the Zn effect had its maximum at the concentration corresponding to a ratio of Zn/(Cu+Al) = 0.35 where conversion of 65% and the selectivity to 1,2-propanediol of 70% was achieved after 60 min of reaction time
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20400 - Chemical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000048" target="_blank" >TN01000048: Biorafinace jako oběhové technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Molecular Catalysis
ISSN
2468-8231
e-ISSN
—
Svazek periodika
533
Číslo periodika v rámci svazku
112796
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85141469507