Skill Optimization Algorithm: A New Human-Based Metaheuristic Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18440%2F23%3A50019867" target="_blank" >RIV/62690094:18440/23:50019867 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/cmc/v74n1/49794" target="_blank" >https://www.techscience.com/cmc/v74n1/49794</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmc.2023.030379" target="_blank" >10.32604/cmc.2023.030379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Skill Optimization Algorithm: A New Human-Based Metaheuristic Technique
Popis výsledku v původním jazyce
Metaheuristic algorithms are widely used in solving optimiza-tion problems. In this paper, a new metaheuristic algorithm called Skill Optimization Algorithm (SOA) is proposed to solve optimization problems. The fundamental inspiration in designing SOA is human efforts to acquire and improve skills. Various stages of SOA are mathematically modeled in two phases, including: (i) exploration, skill acquisition from experts and (ii) exploitation, skill improvement based on practice and individual effort. The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types. The optimization results show that SOA, by balancing exploration and exploitation, is able to provide good performance and appro-priate solutions for optimization problems. In addition, the performance of SOA in optimization is compared with ten metaheuristic algorithms to evalu-ate the quality of the results obtained by the proposed approach. Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achieves much more competitive results.
Název v anglickém jazyce
Skill Optimization Algorithm: A New Human-Based Metaheuristic Technique
Popis výsledku anglicky
Metaheuristic algorithms are widely used in solving optimiza-tion problems. In this paper, a new metaheuristic algorithm called Skill Optimization Algorithm (SOA) is proposed to solve optimization problems. The fundamental inspiration in designing SOA is human efforts to acquire and improve skills. Various stages of SOA are mathematically modeled in two phases, including: (i) exploration, skill acquisition from experts and (ii) exploitation, skill improvement based on practice and individual effort. The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types. The optimization results show that SOA, by balancing exploration and exploitation, is able to provide good performance and appro-priate solutions for optimization problems. In addition, the performance of SOA in optimization is compared with ten metaheuristic algorithms to evalu-ate the quality of the results obtained by the proposed approach. Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achieves much more competitive results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMC-Computers, Materials & Continua
ISSN
1546-2218
e-ISSN
1546-2226
Svazek periodika
74
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
179-202
Kód UT WoS článku
000890984200006
EID výsledku v databázi Scopus
2-s2.0-85139056590