Analysis of Mobile Social Networks Using Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50004169" target="_blank" >RIV/62690094:18450/16:50004169 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216275:25530/17:39912024
Výsledek na webu
<a href="http://dx.doi.org/10.1166/asl.2016.6688" target="_blank" >http://dx.doi.org/10.1166/asl.2016.6688</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1166/asl.2016.6688" target="_blank" >10.1166/asl.2016.6688</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Mobile Social Networks Using Clustering
Popis výsledku v původním jazyce
Social networks are becoming a phenomenon of the 21st century. As well as gaining new users on the Internet, they also began to penetrate into mobile devices. The aim of the paper is to introduce the five most commonly used mobile social networks in Europe, with a focus on the European Union and their analysis. For this purpose, the data-mining technology of K-means for clustering process will be used. Prior to the cluster analysis itself, the data will be illustrated using principal component method for graphical visualization, which will define the three main components. The factors according to which there is a clustering, will be detected by a factor analysis using "varimax simple" rotation. In the last part of the paper, the 28 European Union countries are divided into four homogeneous groups, i.e. clusters, for each of the years 2010-2014. These are average values representing the states contained in the given cluster, in comparison with data for all social networks for the European Union and Europe. The input assumption that data (criteria) that enter the cluster analysis are not affected by multi-collinearity will be verified by Spearman correlation coefficient.
Název v anglickém jazyce
Analysis of Mobile Social Networks Using Clustering
Popis výsledku anglicky
Social networks are becoming a phenomenon of the 21st century. As well as gaining new users on the Internet, they also began to penetrate into mobile devices. The aim of the paper is to introduce the five most commonly used mobile social networks in Europe, with a focus on the European Union and their analysis. For this purpose, the data-mining technology of K-means for clustering process will be used. Prior to the cluster analysis itself, the data will be illustrated using principal component method for graphical visualization, which will define the three main components. The factors according to which there is a clustering, will be detected by a factor analysis using "varimax simple" rotation. In the last part of the paper, the 28 European Union countries are divided into four homogeneous groups, i.e. clusters, for each of the years 2010-2014. These are average values representing the states contained in the given cluster, in comparison with data for all social networks for the European Union and Europe. The input assumption that data (criteria) that enter the cluster analysis are not affected by multi-collinearity will be verified by Spearman correlation coefficient.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced science letters
ISSN
1936-6612
e-ISSN
—
Svazek periodika
Volume 22,
Číslo periodika v rámci svazku
5-6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
1273-"1277(5)"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84985982537