Hidden frequency feature in electronic signatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50005024" target="_blank" >RIV/62690094:18450/16:50005024 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-42007-3_13" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42007-3_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-42007-3_13" target="_blank" >10.1007/978-3-319-42007-3_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hidden frequency feature in electronic signatures
Popis výsledku v původním jazyce
Forensics is a science discipline that deals with collecting evidence in crime scene investigation. However if we're dealing with signatures, the crime scene is the signed paper itself. Therefore, for any kind of investigation, there should be a sample and a master signature to benchmark the similarities and differences. The characteristics of a master signature could easily be identified by forensics techniques, yet it is still infeasible for electronic signatures due to ease of copy-pasting. Through the emerging touchscreen technologies, the features of the signatures could be stealthily extracted and stored while the user is signing. Given these facts, the novelty we put forward in this paper is a feature extraction method using short time Fourier transformations to identify frequencies of a simple master signature. We subsequently presented the spectrogram analysis revealing the differences between the original and fake signatures. Finally a validation method for the analysis of the spectrograms is introduced which resulted in a significant gap between real and fraud signatures for various window sizes.
Název v anglickém jazyce
Hidden frequency feature in electronic signatures
Popis výsledku anglicky
Forensics is a science discipline that deals with collecting evidence in crime scene investigation. However if we're dealing with signatures, the crime scene is the signed paper itself. Therefore, for any kind of investigation, there should be a sample and a master signature to benchmark the similarities and differences. The characteristics of a master signature could easily be identified by forensics techniques, yet it is still infeasible for electronic signatures due to ease of copy-pasting. Through the emerging touchscreen technologies, the features of the signatures could be stealthily extracted and stored while the user is signing. Given these facts, the novelty we put forward in this paper is a feature extraction method using short time Fourier transformations to identify frequencies of a simple master signature. We subsequently presented the spectrogram analysis revealing the differences between the original and fake signatures. Finally a validation method for the analysis of the spectrograms is introduced which resulted in a significant gap between real and fraud signatures for various window sizes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-319-42006-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
145-156
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Morioka; Japan
Datum konání akce
2. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000387771300013