Dynamic optimization of fuzzy cognitive maps for time series forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50005184" target="_blank" >RIV/62690094:18450/16:50005184 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0950705116300752" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0950705116300752</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2016.04.023" target="_blank" >10.1016/j.knosys.2016.04.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic optimization of fuzzy cognitive maps for time series forecasting
Popis výsledku v původním jazyce
In this paper we propose a new approach to learning fuzzy cognitive maps (FCMs) as a predictive model for time series forecasting. The first contribution of this paper is the dynamic optimization of the FCM structure, i.e., we propose to select concepts involved in the FCM model before every prediction is made. In addition, the FCM transformation function together with the corresponding parameters are proposed to be optimized dynamically. Finally, the FCM weights are learned. In this way, the entire FCM model is learned in a completely new manner, i.e., it is continuously adapted to the current local characteristics of the forecasted time series. To optimize all of the aforementioned elements, we apply and compare 5 different population-based algorithms: genetic, particle swarm optimization, simulated annealing, artificial bee colony and differential evolution. For the evaluation of the proposed approach we use 11 publicly available data sets. The results of comparative experiments provide evidence that our approach offers a competitive forecasting method that outperforms many state-of-the-art forecasting models. We recommend to use our FCM-based approach for the forecasting of time series that are linear and tend to be trend stationary.
Název v anglickém jazyce
Dynamic optimization of fuzzy cognitive maps for time series forecasting
Popis výsledku anglicky
In this paper we propose a new approach to learning fuzzy cognitive maps (FCMs) as a predictive model for time series forecasting. The first contribution of this paper is the dynamic optimization of the FCM structure, i.e., we propose to select concepts involved in the FCM model before every prediction is made. In addition, the FCM transformation function together with the corresponding parameters are proposed to be optimized dynamically. Finally, the FCM weights are learned. In this way, the entire FCM model is learned in a completely new manner, i.e., it is continuously adapted to the current local characteristics of the forecasted time series. To optimize all of the aforementioned elements, we apply and compare 5 different population-based algorithms: genetic, particle swarm optimization, simulated annealing, artificial bee colony and differential evolution. For the evaluation of the proposed approach we use 11 publicly available data sets. The results of comparative experiments provide evidence that our approach offers a competitive forecasting method that outperforms many state-of-the-art forecasting models. We recommend to use our FCM-based approach for the forecasting of time series that are linear and tend to be trend stationary.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-based systems
ISSN
0950-7051
e-ISSN
—
Svazek periodika
105
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
29-37
Kód UT WoS článku
000378961200003
EID výsledku v databázi Scopus
2-s2.0-84992304037