Usability Prioritization Using Performance Metrics and Hierarchical Agglomerative Clustering in MAR-Learning Application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013620" target="_blank" >RIV/62690094:18450/17:50013620 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-731" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-731</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-731" target="_blank" >10.3233/978-1-61499-800-6-731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Usability Prioritization Using Performance Metrics and Hierarchical Agglomerative Clustering in MAR-Learning Application
Popis výsledku v původním jazyce
This paper highlights the current literatures in usability studies, performance metrics and machine learning algorithm. A literature review is done in these three areas of studies to find a research gap that can be explored further. The paper will then propose a research methodology to attend to the issues of machine learning and usability. An experiment is proposed to compare the efficiency results in between data consistency, correlation between performance metrics and self-reported metrics of a Mobile Augmented Reality learning application. The methodology proposes hierarchical agglomerative clustering technique as a solution in differentiating usability issues according to priority in order to help with usability re-engineering decisions. This paper proposes two objectives through the proposed framework and present evidence on how to achieve them. Lastly, this paper will discuss the results, conclusion and future works of the proposed study.
Název v anglickém jazyce
Usability Prioritization Using Performance Metrics and Hierarchical Agglomerative Clustering in MAR-Learning Application
Popis výsledku anglicky
This paper highlights the current literatures in usability studies, performance metrics and machine learning algorithm. A literature review is done in these three areas of studies to find a research gap that can be explored further. The paper will then propose a research methodology to attend to the issues of machine learning and usability. An experiment is proposed to compare the efficiency results in between data consistency, correlation between performance metrics and self-reported metrics of a Mobile Augmented Reality learning application. The methodology proposes hierarchical agglomerative clustering technique as a solution in differentiating usability issues according to priority in order to help with usability re-engineering decisions. This paper proposes two objectives through the proposed framework and present evidence on how to achieve them. Lastly, this paper will discuss the results, conclusion and future works of the proposed study.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
731-744
Název nakladatele
IOS Press
Místo vydání
Kitakyushu
Místo konání akce
Kitakyushu; Japan
Datum konání akce
26. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—