Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013664" target="_blank" >RIV/62690094:18450/17:50013664 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0925231216315673" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231216315673</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2016.09.113" target="_blank" >10.1016/j.neucom.2016.09.113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets
Popis výsledku v původním jazyce
Rheumatoid Arthritis (RA) is a chronic autoimmune disease that affect joints and muscles, and can result in noticeable disruption of joint structure and function. Early diagnosis of RA is very crucial in preventing disease's progression. However, it is a complicated task for General Practitioners (GPs) due to the wide spectrum of symptoms, and progressive changes in disease's direction over time. In order to assist physicians, and to minimize possible errors due to fatigued or less-experienced physicians, this study proposes an advanced decision support tool based on consultations with a group of experienced medical professionals (i.e. orthopedic surgeons and rheumatologists), and using a well-known soft computing method called Fuzzy Cognitive Maps (FCMs). First, a set of criteria for diagnosis of RA, based on previous studies and consultation with medical professionals have been selected. Then, Particle Swarm Optimization (PSO) and FCMs along with medical experts' knowledge were used to model this problem and calculate the severity of the RA disease. Finally, a small-scale test has been conducted at Shohada University Hospital, Iran, for evaluating the accuracy of the proposed tool. Accuracy level of the tool reached to 90% and the results closely matched the medical professionals' opinions. Considering obtained results in real practice, we believe that the proposed decision support tool can assist GPs in an accurate and timely diagnosis of patients with RA. Ultimately, the risk of wrong or late diagnosis will be diminished, and patients’ disease may be prevented from moving through the advanced stages.
Název v anglickém jazyce
Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets
Popis výsledku anglicky
Rheumatoid Arthritis (RA) is a chronic autoimmune disease that affect joints and muscles, and can result in noticeable disruption of joint structure and function. Early diagnosis of RA is very crucial in preventing disease's progression. However, it is a complicated task for General Practitioners (GPs) due to the wide spectrum of symptoms, and progressive changes in disease's direction over time. In order to assist physicians, and to minimize possible errors due to fatigued or less-experienced physicians, this study proposes an advanced decision support tool based on consultations with a group of experienced medical professionals (i.e. orthopedic surgeons and rheumatologists), and using a well-known soft computing method called Fuzzy Cognitive Maps (FCMs). First, a set of criteria for diagnosis of RA, based on previous studies and consultation with medical professionals have been selected. Then, Particle Swarm Optimization (PSO) and FCMs along with medical experts' knowledge were used to model this problem and calculate the severity of the RA disease. Finally, a small-scale test has been conducted at Shohada University Hospital, Iran, for evaluating the accuracy of the proposed tool. Accuracy level of the tool reached to 90% and the results closely matched the medical professionals' opinions. Considering obtained results in real practice, we believe that the proposed decision support tool can assist GPs in an accurate and timely diagnosis of patients with RA. Ultimately, the risk of wrong or late diagnosis will be diminished, and patients’ disease may be prevented from moving through the advanced stages.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
April 5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
104-112
Kód UT WoS článku
000393532800010
EID výsledku v databázi Scopus
2-s2.0-85008474411