Comparative analysis of selected path-planning approaches in large-scale multi-agent-based environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014630" target="_blank" >RIV/62690094:18450/18:50014630 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417418304160" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417418304160</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2018.07.001" target="_blank" >10.1016/j.eswa.2018.07.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative analysis of selected path-planning approaches in large-scale multi-agent-based environments
Popis výsledku v původním jazyce
Large-scale models are currently used for the simulation, analysis and control of real systems, whether technical, biological, social or economic. In multi-agent simulations of virtual economies, it is important to schedule a large number of agents across the cities involved, in order to establish a functional supply chain network for industrial production. This study describes an experimental evaluation of path planning approaches in the field of multi-agent modelling and simulation, applied to a large-scale setting. The experimental comparison is based on a model in which agents represent economic entities and can participate in mutual interactions. For the purposes of experiment, the model is scaled to various degrees of complexity in terms of the numbers of agents and transportation nodes. Various numbers of agents are used to explore the way in which the model's complexity influences the runtime of the path-planning task. The results indicate that there are significant differences between the runtime performances associated with single approaches, for differing levels of system complexity and model sizes. The study reveals that the appropriate sharing of shortest path information can significantly improve path-planning activities. Hence, this work extends current research in the field of path-planning for multi-agent simulations by conducting an experimental performance analysis of five distinct path-planning approaches and a statistical evaluation of the results. This statistical evaluation contrasts with performance analyses conducted on the basis of 'Big O' notation for algorithmic complexity, which describes the limiting behaviour of the algorithm and gives only a rough performance estimate.
Název v anglickém jazyce
Comparative analysis of selected path-planning approaches in large-scale multi-agent-based environments
Popis výsledku anglicky
Large-scale models are currently used for the simulation, analysis and control of real systems, whether technical, biological, social or economic. In multi-agent simulations of virtual economies, it is important to schedule a large number of agents across the cities involved, in order to establish a functional supply chain network for industrial production. This study describes an experimental evaluation of path planning approaches in the field of multi-agent modelling and simulation, applied to a large-scale setting. The experimental comparison is based on a model in which agents represent economic entities and can participate in mutual interactions. For the purposes of experiment, the model is scaled to various degrees of complexity in terms of the numbers of agents and transportation nodes. Various numbers of agents are used to explore the way in which the model's complexity influences the runtime of the path-planning task. The results indicate that there are significant differences between the runtime performances associated with single approaches, for differing levels of system complexity and model sizes. The study reveals that the appropriate sharing of shortest path information can significantly improve path-planning activities. Hence, this work extends current research in the field of path-planning for multi-agent simulations by conducting an experimental performance analysis of five distinct path-planning approaches and a statistical evaluation of the results. This statistical evaluation contrasts with performance analyses conducted on the basis of 'Big O' notation for algorithmic complexity, which describes the limiting behaviour of the algorithm and gives only a rough performance estimate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
415-427
Kód UT WoS článku
000446288600027
EID výsledku v databázi Scopus
2-s2.0-85049933474