Chaotic predation scheme for age-clustered one predator-one prey Lotka-Volterra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014732" target="_blank" >RIV/62690094:18450/18:50014732 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11071-018-4071-y" target="_blank" >https://link.springer.com/article/10.1007/s11071-018-4071-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-018-4071-y" target="_blank" >10.1007/s11071-018-4071-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chaotic predation scheme for age-clustered one predator-one prey Lotka-Volterra
Popis výsledku v původním jazyce
Lotka-Volterra differential equations deal with modeling of predator and prey populations and interrelation of population sizes in a continuous domain. Since all populations, be they predators or prays, are only the estimates in consequence of sampling process, this paper initially concerns with discretization schemes of one predator-prey Lotka-Volterra systems. Second-order Runge-Kutta approximation is used to discretize the original differential equations for flexibility to manipulate the system parameters. Subsequent to discretization, a novel predation scheme is introduced to enhance the rationalization of original model with age cluster-based and detailed rules which are based on reproductivity, predation ability, predation essentiality, food provision and consumption. Aging is also simulated with transitive structure of the algorithms that the alive individuals are getting older and changing clusters after the predation scheme is operated. Experiments revealed that our model exhibits not only fluctuations like the original model but also stable trajectories and fractal structure depending on the model parameters. Therefore, the main novelty of this paper briefly is the discovery of chaotic one predator-one prey system exhibiting chaotic behavior for a narrow interval and revealing a strange attractor which is very unique.
Název v anglickém jazyce
Chaotic predation scheme for age-clustered one predator-one prey Lotka-Volterra
Popis výsledku anglicky
Lotka-Volterra differential equations deal with modeling of predator and prey populations and interrelation of population sizes in a continuous domain. Since all populations, be they predators or prays, are only the estimates in consequence of sampling process, this paper initially concerns with discretization schemes of one predator-prey Lotka-Volterra systems. Second-order Runge-Kutta approximation is used to discretize the original differential equations for flexibility to manipulate the system parameters. Subsequent to discretization, a novel predation scheme is introduced to enhance the rationalization of original model with age cluster-based and detailed rules which are based on reproductivity, predation ability, predation essentiality, food provision and consumption. Aging is also simulated with transitive structure of the algorithms that the alive individuals are getting older and changing clusters after the predation scheme is operated. Experiments revealed that our model exhibits not only fluctuations like the original model but also stable trajectories and fractal structure depending on the model parameters. Therefore, the main novelty of this paper briefly is the discovery of chaotic one predator-one prey system exhibiting chaotic behavior for a narrow interval and revealing a strange attractor which is very unique.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear dynamics
ISSN
0924-090X
e-ISSN
—
Svazek periodika
92
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
499-510
Kód UT WoS článku
000428445700026
EID výsledku v databázi Scopus
2-s2.0-85040776827