Mobile AR Solution for Deaf People: Correlation Between Face Detection and Speech Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015843" target="_blank" >RIV/62690094:18450/19:50015843 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-27192-3_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-27192-3_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-27192-3_19" target="_blank" >10.1007/978-3-030-27192-3_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mobile AR Solution for Deaf People: Correlation Between Face Detection and Speech Recognition
Popis výsledku v původním jazyce
In the last two years, the authors’ research has been focused on designing a smart solution to compensate for hearing or visual deficiencies using the Google Glass hardware device and its own software architecture. This paper presents a solution aimed on deaf people or people with hearing impairment. At the beginning of this paper there is a brief explanation of the architecture of the designed solution, a description of the user interface through Google Glass. Related work to face detection, visual activity detection and speech recognition is presented with many possible approaches to these research areas. The principle of the solution lies in the combination of face detection and subsequent assignment of the recognized speech to the mouth of the correct face in the image. The aim of the solution is to digitally capture the ambient sound and based on its evaluation using neural networks, to present detected speech in a text form assigned to detected face from camera stream. The testing has shown that the solution is beneficial, and it is working as expected. Machine Learning Kit provides good results in face detection and communication with Google Cloud Speech API is fast enough for smooth user experience.
Název v anglickém jazyce
Mobile AR Solution for Deaf People: Correlation Between Face Detection and Speech Recognition
Popis výsledku anglicky
In the last two years, the authors’ research has been focused on designing a smart solution to compensate for hearing or visual deficiencies using the Google Glass hardware device and its own software architecture. This paper presents a solution aimed on deaf people or people with hearing impairment. At the beginning of this paper there is a brief explanation of the architecture of the designed solution, a description of the user interface through Google Glass. Related work to face detection, visual activity detection and speech recognition is presented with many possible approaches to these research areas. The principle of the solution lies in the combination of face detection and subsequent assignment of the recognized speech to the mouth of the correct face in the image. The aim of the solution is to digitally capture the ambient sound and based on its evaluation using neural networks, to present detected speech in a text form assigned to detected face from camera stream. The testing has shown that the solution is beneficial, and it is working as expected. Machine Learning Kit provides good results in face detection and communication with Google Cloud Speech API is fast enough for smooth user experience.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mobile Web and Intelligent Information Systems
ISBN
978-3-030-27191-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
243-254
Název nakladatele
Springer Nature Switzerland AG 2019
Místo vydání
Springer, Cham
Místo konání akce
Istanbul, Turkey
Datum konání akce
26. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—