Novel Four Stages Classification of Breast Cancer Using Infrared Thermal Imaging and a Deep Learning Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015948" target="_blank" >RIV/62690094:18450/19:50015948 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/332775063_Novel_Four_Stages_Classification_of_Breast_Cancer_Using_Infrared_Thermal_Imaging_and_a_Deep_Learning_Model" target="_blank" >https://www.researchgate.net/publication/332775063_Novel_Four_Stages_Classification_of_Breast_Cancer_Using_Infrared_Thermal_Imaging_and_a_Deep_Learning_Model</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17935-9_7" target="_blank" >10.1007/978-3-030-17935-9_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Four Stages Classification of Breast Cancer Using Infrared Thermal Imaging and a Deep Learning Model
Popis výsledku v původním jazyce
According to a recent study conducted in 2016, 2.8 million women worldwide had already been diagnosed with breast cancer; moreover, the medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. We have seen the apparition of several techniques during the past 60 years, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Also, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic methods. This article, present a Novel technique based on an inceptionV3 couples to k-Nearest Neighbors (InceptionV3-KNN) and a particular module that we named: “StageCancer.” These techniques succeed to classify breast cancer in four stages (T1: non-invasive breast cancer, T2: the tumor measures up to 2Â cm, T3: the tumor is larger than 5Â cm and T4: the full breast is cover by cancer).
Název v anglickém jazyce
Novel Four Stages Classification of Breast Cancer Using Infrared Thermal Imaging and a Deep Learning Model
Popis výsledku anglicky
According to a recent study conducted in 2016, 2.8 million women worldwide had already been diagnosed with breast cancer; moreover, the medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. We have seen the apparition of several techniques during the past 60 years, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Also, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic methods. This article, present a Novel technique based on an inceptionV3 couples to k-Nearest Neighbors (InceptionV3-KNN) and a particular module that we named: “StageCancer.” These techniques succeed to classify breast cancer in four stages (T1: non-invasive breast cancer, T2: the tumor measures up to 2Â cm, T3: the tumor is larger than 5Â cm and T4: the full breast is cover by cancer).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-17934-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
63-74
Název nakladatele
Springer Verlag
Místo vydání
Berlin
Místo konání akce
Yogakarta
Datum konání akce
8. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—