Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Edge Information Based Image Fusion Metrics Using Fractional Order Differentiation and Sigmoidal Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017060" target="_blank" >RIV/62690094:18450/20:50017060 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9090867/" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9090867/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.2993607" target="_blank" >10.1109/ACCESS.2020.2993607</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Edge Information Based Image Fusion Metrics Using Fractional Order Differentiation and Sigmoidal Functions

  • Popis výsledku v původním jazyce

    In recent years, the number of image fusion schemes presented by the research community has increased significantly. Measuring the performance of these schemes is an important issue. In this work, we introduce three quantitative fusion metrics to assess the quality of an image fusion algorithm. The proposed metrics rely on edge information that is obtained using fractional order differentiation. Edge and orientation strengths are fed into three sigmoidal functions separately for estimating the values of three normalized weighted metrics for the fused image corresponding to source images. The experiments on the multi-focus, infrared-visible and medical image fusion pairs demonstrate that the proposed fusion metrics are perceptually meaningful and outperform some of the state-of-the-art metrics.

  • Název v anglickém jazyce

    Edge Information Based Image Fusion Metrics Using Fractional Order Differentiation and Sigmoidal Functions

  • Popis výsledku anglicky

    In recent years, the number of image fusion schemes presented by the research community has increased significantly. Measuring the performance of these schemes is an important issue. In this work, we introduce three quantitative fusion metrics to assess the quality of an image fusion algorithm. The proposed metrics rely on edge information that is obtained using fractional order differentiation. Edge and orientation strengths are fed into three sigmoidal functions separately for estimating the values of three normalized weighted metrics for the fused image corresponding to source images. The experiments on the multi-focus, infrared-visible and medical image fusion pairs demonstrate that the proposed fusion metrics are perceptually meaningful and outperform some of the state-of-the-art metrics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    88385-88398

  • Kód UT WoS článku

    000538766800004

  • EID výsledku v databázi Scopus

    2-s2.0-85085204801