Linear uncertain extensions of the minimum cost consensus model based on uncertain distance and consensus utility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017578" target="_blank" >RIV/62690094:18450/21:50017578 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1566253520304279?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253520304279?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2020.12.002" target="_blank" >10.1016/j.inffus.2020.12.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear uncertain extensions of the minimum cost consensus model based on uncertain distance and consensus utility
Popis výsledku v původním jazyce
Uncertainty theory adopts the belief degree and uncertainty distribution to ensure good alignment with a decision-maker's uncertain preferences, making the final decisions obtained from the consensus-reaching process closer to the actual decision-making scenarios. Under the constraints of the uncertain distance measure and consensus utility, this article explores the minimum-cost consensus model under various linear uncertainty distribution-based preferences. First, the uncertain distance is used to measure the deviation between individual opinions and the consensus through uncertainty distributions. A nonlinear analytical formula is derived to avoid the computational complexity of integral and piecewise function operations, thus reducing the calculation cost of the uncertain distance measure. The consensus utility function defined in this article characterizes the adjustment value and degree of aggregation of individual opinions. Three new consensus models are constructed based on the consensus utility and linear uncertainty distribution. The results show that, in complex group decision-making contexts, the uncertain consensus models are more flexible than traditional minimum-cost consensus models: compared with the high volatility of the adjusted opinions in traditional deterministic consensus models with crisp number-based preferences, the variation trends of both individual adjusted opinions and the collective opinion with a linear uncertainty distribution are much smoother and the fitting range is closer to reality. The introduction of the consensus utility not only reflects the relative changes of individual opinions, but also accounts for individual psychological changes during the opinion-adjustment process. Most importantly, it reduces the cost per unit of consensus utility, facilitates the determination of the optimal threshold for the consensus utility, and improves the efficiency of resource allocation. © 2020 Elsevier B.V.
Název v anglickém jazyce
Linear uncertain extensions of the minimum cost consensus model based on uncertain distance and consensus utility
Popis výsledku anglicky
Uncertainty theory adopts the belief degree and uncertainty distribution to ensure good alignment with a decision-maker's uncertain preferences, making the final decisions obtained from the consensus-reaching process closer to the actual decision-making scenarios. Under the constraints of the uncertain distance measure and consensus utility, this article explores the minimum-cost consensus model under various linear uncertainty distribution-based preferences. First, the uncertain distance is used to measure the deviation between individual opinions and the consensus through uncertainty distributions. A nonlinear analytical formula is derived to avoid the computational complexity of integral and piecewise function operations, thus reducing the calculation cost of the uncertain distance measure. The consensus utility function defined in this article characterizes the adjustment value and degree of aggregation of individual opinions. Three new consensus models are constructed based on the consensus utility and linear uncertainty distribution. The results show that, in complex group decision-making contexts, the uncertain consensus models are more flexible than traditional minimum-cost consensus models: compared with the high volatility of the adjusted opinions in traditional deterministic consensus models with crisp number-based preferences, the variation trends of both individual adjusted opinions and the collective opinion with a linear uncertainty distribution are much smoother and the fitting range is closer to reality. The introduction of the consensus utility not only reflects the relative changes of individual opinions, but also accounts for individual psychological changes during the opinion-adjustment process. Most importantly, it reduces the cost per unit of consensus utility, facilitates the determination of the optimal threshold for the consensus utility, and improves the efficiency of resource allocation. © 2020 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
12-26
Kód UT WoS článku
000620739900002
EID výsledku v databázi Scopus
2-s2.0-85098541793