Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017988" target="_blank" >RIV/62690094:18450/21:50017988 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9359784" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9359784</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3060778" target="_blank" >10.1109/ACCESS.2021.3060778</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

  • Popis výsledku v původním jazyce

    A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being detected by a security system. The traditional method of detecting botnets commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer framework for botnet detection using machine learning algorithms that consist of a filtering module and classification module to detect the botnet&apos;s command and control server. We highlighted several criteria for our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet in encapsulated technique. We used behavior-based analysis through flow-based features that analyzed the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.

  • Název v anglickém jazyce

    Multilayer Framework for Botnet Detection Using Machine Learning Algorithms

  • Popis výsledku anglicky

    A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being detected by a security system. The traditional method of detecting botnets commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer framework for botnet detection using machine learning algorithms that consist of a filtering module and classification module to detect the botnet&apos;s command and control server. We highlighted several criteria for our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet in encapsulated technique. We used behavior-based analysis through flow-based features that analyzed the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    48753-48768

  • Kód UT WoS článku

    000637188400001

  • EID výsledku v databázi Scopus

    2-s2.0-85101756348