An enhanced spectral clustering algorithm with s-distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018011" target="_blank" >RIV/62690094:18450/21:50018011 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/13/4/596" target="_blank" >https://www.mdpi.com/2073-8994/13/4/596</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13040596" target="_blank" >10.3390/sym13040596</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An enhanced spectral clustering algorithm with s-distance
Popis výsledku v původním jazyce
Calculating and monitoring customer churn metrics is important for companies to retain customers and earn more profit in business. In this study, a churn prediction framework is developed by modified spectral clustering (SC). However, the similarity measure plays an imperative role in clustering for predicting churn with better accuracy by analyzing industrial data. The linear Euclidean distance in the traditional SC is replaced by the non-linear S-distance (Sd). The Sd is deduced from the concept of S-divergence (SD). Several characteristics of Sd are discussed in this work. Assays are conducted to endorse the proposed clustering algorithm on four synthetics, eight UCI, two industrial databases and one telecommunications database related to customer churn. Three existing clustering algorithms—k-means, density-based spatial clustering of applications with noise and conventional SC—are also implemented on the above-mentioned 15 databases. The empirical outcomes show that the proposed clustering algorithm beats three existing clustering algorithms in terms of its Jaccard index, f-score, recall, precision and accuracy. Finally, we also test the significance of the clustering results by the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test,and sign tests. The relative study shows that the outcomes of the proposed algorithm are interesting, especially in the case of clusters of arbitrary shape. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
An enhanced spectral clustering algorithm with s-distance
Popis výsledku anglicky
Calculating and monitoring customer churn metrics is important for companies to retain customers and earn more profit in business. In this study, a churn prediction framework is developed by modified spectral clustering (SC). However, the similarity measure plays an imperative role in clustering for predicting churn with better accuracy by analyzing industrial data. The linear Euclidean distance in the traditional SC is replaced by the non-linear S-distance (Sd). The Sd is deduced from the concept of S-divergence (SD). Several characteristics of Sd are discussed in this work. Assays are conducted to endorse the proposed clustering algorithm on four synthetics, eight UCI, two industrial databases and one telecommunications database related to customer churn. Three existing clustering algorithms—k-means, density-based spatial clustering of applications with noise and conventional SC—are also implemented on the above-mentioned 15 databases. The empirical outcomes show that the proposed clustering algorithm beats three existing clustering algorithms in terms of its Jaccard index, f-score, recall, precision and accuracy. Finally, we also test the significance of the clustering results by the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test,and sign tests. The relative study shows that the outcomes of the proposed algorithm are interesting, especially in the case of clusters of arbitrary shape. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
"Article number 596"
Kód UT WoS článku
000643603700001
EID výsledku v databázi Scopus
2-s2.0-85104180766