Spoofing detection on hand images using quality assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018185" target="_blank" >RIV/62690094:18450/21:50018185 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11042-021-10976-z" target="_blank" >https://link.springer.com/article/10.1007%2Fs11042-021-10976-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-021-10976-z" target="_blank" >10.1007/s11042-021-10976-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spoofing detection on hand images using quality assessment
Popis výsledku v původním jazyce
Recent research on biometrics focuses on achieving a high success rate of authentication and addressing the concern of various spoofing attacks. Although hand geometry recognition provides adequate security over unauthorized access, it is susceptible to presentation attack. This paper presents an anti-spoofing method toward hand biometrics. A presentation attack detection approach is addressed by assessing the visual quality of genuine and fake hand images. A threshold-based gradient magnitude similarity quality metric is proposed to discriminate between the real and spoofed hand samples. The visual hand images of 255 subjects from the Bogazici University hand database are considered as original samples. Correspondingly, from each genuine sample, we acquire a forged image using a Canon EOS 700D camera. Such fake hand images with natural degradation are considered for electronic screen display based spoofing attack detection. Furthermore, we create another fake hand dataset with artificial degradation by introducing additional Gaussian blur, salt and pepper, and speckle noises to original images. Ten quality metrics are measured from each sample for classification between original and fake hand image. The classification experiments are performed using the k-nearest neighbors, random forest, and support vector machine classifiers, as well as deep convolutional neural networks. The proposed gradient similarity-based quality metric achieves 1.5% average classification error using the k-nearest neighbors and random forest classifiers. An average classification error of 2.5% is obtained using the baseline evaluation with the MobileNetV2 deep network for discriminating original and different types of fake hand samples. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
Spoofing detection on hand images using quality assessment
Popis výsledku anglicky
Recent research on biometrics focuses on achieving a high success rate of authentication and addressing the concern of various spoofing attacks. Although hand geometry recognition provides adequate security over unauthorized access, it is susceptible to presentation attack. This paper presents an anti-spoofing method toward hand biometrics. A presentation attack detection approach is addressed by assessing the visual quality of genuine and fake hand images. A threshold-based gradient magnitude similarity quality metric is proposed to discriminate between the real and spoofed hand samples. The visual hand images of 255 subjects from the Bogazici University hand database are considered as original samples. Correspondingly, from each genuine sample, we acquire a forged image using a Canon EOS 700D camera. Such fake hand images with natural degradation are considered for electronic screen display based spoofing attack detection. Furthermore, we create another fake hand dataset with artificial degradation by introducing additional Gaussian blur, salt and pepper, and speckle noises to original images. Ten quality metrics are measured from each sample for classification between original and fake hand image. The classification experiments are performed using the k-nearest neighbors, random forest, and support vector machine classifiers, as well as deep convolutional neural networks. The proposed gradient similarity-based quality metric achieves 1.5% average classification error using the k-nearest neighbors and random forest classifiers. An average classification error of 2.5% is obtained using the baseline evaluation with the MobileNetV2 deep network for discriminating original and different types of fake hand samples. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
28603-28626
Kód UT WoS článku
000655825400001
EID výsledku v databázi Scopus
2-s2.0-85106744840