Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018194" target="_blank" >RIV/62690094:18450/21:50018194 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.36689/uhk/hed/2021-01-014" target="_blank" >http://dx.doi.org/10.36689/uhk/hed/2021-01-014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.36689/uhk/hed/2021-01-014" target="_blank" >10.36689/uhk/hed/2021-01-014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
Popis výsledku v původním jazyce
We employ a recurrent neural network with Long short-term memory for the task of stock price forecasting. We chose three stocks from the same sub-industry: Visa, Mastercard, and PayPal. This paper aims to test the LSTM network's prediction on stock prices and propose the best settings for selected stock price forecasting. The secondary goal is to assess how the settings differed in the case of two highly correlated stocks (Visa-Mastercard year correlation coefficient average: 0.97) and the case of only weak correlated stock (Visa-PayPal correlation coefficient average: 0.39). We tested 117 different settings of LSTM neural networks. The settings differed by the number of epochs/splits (from ten to fifty-eight by the step of four) and the range (minute, hour, and day). Our dataset was the stock price from 1.6.2020 to 15.1.2021. The best performing network has been trained on a 10-day period for Visa and 10-minute for Mastercard and PYPL. However, the differences were negligible, so we did not find the number of epochs as a key setting, unlike in the case of FOREX.
Název v anglickém jazyce
Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
Popis výsledku anglicky
We employ a recurrent neural network with Long short-term memory for the task of stock price forecasting. We chose three stocks from the same sub-industry: Visa, Mastercard, and PayPal. This paper aims to test the LSTM network's prediction on stock prices and propose the best settings for selected stock price forecasting. The secondary goal is to assess how the settings differed in the case of two highly correlated stocks (Visa-Mastercard year correlation coefficient average: 0.97) and the case of only weak correlated stock (Visa-PayPal correlation coefficient average: 0.39). We tested 117 different settings of LSTM neural networks. The settings differed by the number of epochs/splits (from ten to fifty-eight by the step of four) and the range (minute, hour, and day). Our dataset was the stock price from 1.6.2020 to 15.1.2021. The best performing network has been trained on a 10-day period for Visa and 10-minute for Mastercard and PYPL. However, the differences were negligible, so we did not find the number of epochs as a key setting, unlike in the case of FOREX.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
HRADEC ECONOMIC DAYS, VOL 11(1)
ISBN
978-80-7435-822-7
ISSN
2464-6059
e-ISSN
2464-6067
Počet stran výsledku
10
Strana od-do
145-154
Název nakladatele
UNIV HRADEC KRALOVE
Místo vydání
HRADEC KRALOVE 3
Místo konání akce
Hradec Kralove
Datum konání akce
25. 3. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000670596900014