Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum Key Distribution Secured Optical Networks: A Survey

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018497" target="_blank" >RIV/62690094:18450/21:50018497 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/ielx7/8782661/8901158/09520678.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/8782661/8901158/09520678.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/OJCOMS.2021.3106659" target="_blank" >10.1109/OJCOMS.2021.3106659</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum Key Distribution Secured Optical Networks: A Survey

  • Popis výsledku v původním jazyce

    Increasing incidents of cyber attacks and evolution of quantum computing poses challenges to secure existing information and communication technologies infrastructure. In recent years, quantum key distribution (QKD) is being extensively researched, and is widely accepted as a promising technology to realize secure networks. Optical fiber networks carry a huge amount of information, and are widely deployed around the world in the backbone terrestrial, submarine, metro, and access networks. Thus, instead of using separate dark fibers for quantum communication, integration of QKD with the existing classical optical networks has been proposed as a cost-efficient solution, however, this integration introduces new research challenges. In this paper, we do a comprehensive survey of the state-of-the-art QKD secured optical networks, which is going to shape communication networks in the coming decades. We elucidate the methods and protocols used in QKD secured optical networks, and describe the process of key establishment. Various methods proposed in the literature to address the networking challenges in QKD secured optical networks, specifically, routing, wavelength and time-slot allocation (RWTA), resiliency, trusted repeater node (TRN) placement, QKD for multicast service, and quantum key recycling are described and compared in detail. This survey begins with the introduction to QKD and its advantages over conventional encryption methods. Thereafter, an overview of QKD is given including quantum bits, basic QKD system, QKD schemes and protocol families along with the detailed description of QKD process based on the Bennett and Brassard-84 (BB84) protocol as it is the most widely used QKD protocol in the literature. QKD system are also prone to some specific types of attacks, hence, we describe the types of quantum hacking attacks on the QKD system along with the methods used to prevent them. Subsequently, the process of point-to-point mechanism of QKD over an optical fiber link is described in detail using the BB84 protocol. Different architectures of QKD secured optical networks are described next. Finally, major findings from this comprehensive survey are summarized with highlighting open issues and challenges in QKD secured optical networks.

  • Název v anglickém jazyce

    Quantum Key Distribution Secured Optical Networks: A Survey

  • Popis výsledku anglicky

    Increasing incidents of cyber attacks and evolution of quantum computing poses challenges to secure existing information and communication technologies infrastructure. In recent years, quantum key distribution (QKD) is being extensively researched, and is widely accepted as a promising technology to realize secure networks. Optical fiber networks carry a huge amount of information, and are widely deployed around the world in the backbone terrestrial, submarine, metro, and access networks. Thus, instead of using separate dark fibers for quantum communication, integration of QKD with the existing classical optical networks has been proposed as a cost-efficient solution, however, this integration introduces new research challenges. In this paper, we do a comprehensive survey of the state-of-the-art QKD secured optical networks, which is going to shape communication networks in the coming decades. We elucidate the methods and protocols used in QKD secured optical networks, and describe the process of key establishment. Various methods proposed in the literature to address the networking challenges in QKD secured optical networks, specifically, routing, wavelength and time-slot allocation (RWTA), resiliency, trusted repeater node (TRN) placement, QKD for multicast service, and quantum key recycling are described and compared in detail. This survey begins with the introduction to QKD and its advantages over conventional encryption methods. Thereafter, an overview of QKD is given including quantum bits, basic QKD system, QKD schemes and protocol families along with the detailed description of QKD process based on the Bennett and Brassard-84 (BB84) protocol as it is the most widely used QKD protocol in the literature. QKD system are also prone to some specific types of attacks, hence, we describe the types of quantum hacking attacks on the QKD system along with the methods used to prevent them. Subsequently, the process of point-to-point mechanism of QKD over an optical fiber link is described in detail using the BB84 protocol. Different architectures of QKD secured optical networks are described next. Finally, major findings from this comprehensive survey are summarized with highlighting open issues and challenges in QKD secured optical networks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY

  • ISSN

    2644-125X

  • e-ISSN

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    35

  • Strana od-do

    2049-2083

  • Kód UT WoS článku

    000694962900002

  • EID výsledku v databázi Scopus